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"As for my own part, it is my opinion that the true method of dissection
would be to trace the nervous filaments through the substance of the brain, to
see which way they pass, and where they end; but this method is accompanied
with so many difficulties, that I know not whether we may hope ever to see it
executed without a particular manner of preparing."

-Niels Steensen, 1665



Abstract

The brain, with its intricate network of neural cells, their connections, and

associated functions, forms a complex structure that has long fascinated re-

searchers. Recent advances in MRI technology, particularly diffusion MRI,

have enabled the in vivo investigation of connections between brain regions

and the microstructure of the neural fibers linking those regions. However,

these advancements and the methodologies they enabled could benefit from

further improvements. On the macroscopic scale, identifying these connec-

tions relies on tractography algorithms that require either pre-defined atlases

or extensive manual corrections and expertise to delineate accurately. On

the microscopic scale, advancements in microstructural models have enabled

more precise estimations of the direction and properties of each fiber bun-

dle within a voxel. However, the increasing number and complexity of these

models have delayed their adoption in medical research.

During this thesis, tools were developed to ease the generation and clean-

ing of tractography outputs and to facilitate the comparison and interpreta-

tion of models estimating multiple fiber populations per voxel. These tools

included a modification to the tractography algorithm, a method for filter-

ing spurious streamlines, and a framework attributing multi-fixel metrics to

specific tracts. These methods were validated using synthetic phantoms, in

vivo scans, and population studies. These studies examined differences in the

language pathways of dyslexic children, the effects of abstinence in alcohol-

dependent participants and the impact of intense motor training on partici-

pants with impaired motor control due to cerebral palsy and stroke.

The modified tractography algorithm produced fewer spurious stream-

lines compared to classic algorithms. The filtering process was efficient and

preserved tract morphology, while its byproducts enabled along-tract anal-

yses. The proposed framework provided comparative analyses with exist-

ing approaches, demonstrated high flexibility in its inputs, and introduced

a new approach showing increased accuracy. Furthermore, the tools devel-

oped are independent of specific methodologies or algorithms, and all code

has been made open-source to enhance usability. Overall, these tools could

benefit researchers analyzing specific white matter tracts, especially in non-

conventional brains.
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INTRODUCTION

The brain is a complex structure, from its role as the residence of our

thoughts, to its structure and the organization of its interweaving neural cells.

Each brain area fulfills a distinct role in our day to day lives, and each of these

areas is interconnected through a network comprised of millions of inter-

twining neurons, often referred to as white matter. These neurons transmit

information through electrical impulses along the axons, i.e., projections of

the neurons conducting the action potentials away from the cell body. This

perpetual transmission of concurring signals is supported by a network of

blood vessels providing essential nutrients and oxygen, along with glial cells

that maintain homeostasis and provide support for the neurons. The archi-

tecture of the brain, encompassing all these cohesive elements, has long been

an area of interest. Recent advances in magnetic resonance imaging (MRI)

technology have enabled the in vivo investigation of both the microscopic

and macroscopic organization of the white matter and its complex network

of neural fibers. This is achieved through diffusion MRI, a category of MRI

leveraging the diffusion patterns of water molecules present in the brain to

gain information about its internal structures.

Although the reconstruction of the macroscopic neural pathways, a pro-

cess known as tractography, has enabled the visualization of connections be-

tween brain regions in vivo and is now a standard practice in guiding neu-

rosurgery, the resulting streamlines are heavily influenced by the parameters

employed in the algorithms. Fine-tuning these parameters requires expert

knowledge in brain anatomy and often requires adjustments depending on

the region of interest, making the automation of this process challenging.

The commonly used solutions are to manually adjust the parameters and vi-

sually inspect the appearance of the tract, a process that can be quite time

consuming, or to use atlas-based algorithms.

Furthermore, while the emergence of advanced diffusion models capa-

ble of discerning multiple fiber populations in a voxel, referred to as multi-

fixel models, have increased the accuracy of the estimated direction and mi-

crostructure of the neural fibers, they are more difficult to interpret and are

not commonly used in clinical practice. This increased precision is accompa-

nied by longer computation times, a greater number of parameters to adjust,

and more complex outputs. The variety of available models has also compli-

cated the selection of a successor to DTI, one of the earliest diffusion models.

Despite being introduced in 1994 and having known limitations, DTI remains

the most commonly used model in both clinical and research settings.

The aforementioned limitations are further exacerbated in cases involving

highly deformed brains. Since most of the state-of-the-art research is being

1



developed using long diffusion acquisitionswith healthy controls, many auto-

mated processes do not function as intended when applied to brains deviating

from the average brain structure due to lesions. This is primarily due to most

algorithms not being validated on highly deformed brains. This challenge

extends to many emerging AI tools, which are often not trained on highly

irregular data. Furthermore, while longer dMRI sequences have the potential

to acquire more information and reduce noise in the diffusion signal, patients

with neuropathologies often struggle to stay for extended periods of time in

a MRI scanner. There is thus a delicate balance between the time a patient

can stay in the scanner, and the length of the diffusion MRI sequence.

Additionally, analyzing patient-specific regions of interest, commonly facili-

tated by automated atlases, can become arduous when the region of interest

is not represented in the atlas, such as regions isolated via functional MRI.

Overall, patient-specific analyses, especially with neuropathological brains,

significantly increase the time required for many steps of the classical analy-

sis pipelines.

The overarching objective of this thesis was to elaborate tools capable of

facilitating the analysis of white matter tract in neuropathological brains. To

achieve this goal, tools were developed to simplify tract extraction, ensur-

ing the generation of clean tracts, and to provide flexible multi-fixel analyses

tailored for patient-specific studies in brains exhibiting significant deforma-

tions.

Generating streamlines connecting regions across the brain and navigating

through its different structures, such as the ventricles and the cortical folds,

requires high angles of curvature. However, enabling these high angles in the

streamline generation process creates a lot of biologically implausible neural

pathways. To remedy this issue, we propose a simple modification of the

classic tractography algorithm to enable a variable maximum angle between

tractography steps to allow specific brain regions to benefit from a higher

maximum angle.

Another way to mitigate the appearance of these spurious streamlines is to

intervene after the creation of the tracts and to filter out spurious stream-

lines. To demonstrate this approach, we propose a filtering algorithm based

on density estimates along the tract trajectory, which can be leveraged for

along-tract analysis.

Once the tracts are obtained and cleaned either with classical means or the

proposed approaches, they can be integrated with multi-fixel microstructural

outputs to estimate the tract-specific microstructural properties of brain con-

nections along their pathway. To achieve this task, we introduce a framework

for attributing microstructural properties to neural tracts, thereby simplify-

ing the analysis of these properties along tracts of interest.

2



INTRODUCTION

A central theme throughout this thesis was the emphasis on visualizing the

various steps within the pipeline. This approach ensures that results and anal-

yses were visualized, facilitating the detection of edge cases where the behav-

ior did not fit the intended results.

This thesis will begin with a brief overview of the fundamental concepts

involved in diffusionMRI and the notions uponwhich the developmentsmade

in this thesis are built. Afterwards, the methodology developed will be de-

scribed through three key contributions: a modification of tractography algo-

rithms to account for the morphology of white matter adjacent to the cortex,

an automated streamline algorithm for tract clean-up, and the combination

of these tracts with multi-fixel models to characterize the microstructure of

macroscopic brain pathways. These techniques will then be applied to co-

horts of participants afflicted with neurological pathologies significantly im-

pacting brain morphology, including stroke, cerebral palsy, and alcohol use

disorder.
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Background

"There is no scientific study more vital to man than the study of his
own brain. Our entire view of the universe depends on it."

-Francis Crick, 1979

4



BACKGROUND

Awide variety of approaches have been employed in the pursuit of explor-

ing and understanding the inner workings of the brain, from the first autopsy

practices to modern imaging technologies. Before delving into the topic of

this thesis, let us remind ourselves of how we got here. This section covers

the main background and foundational concepts on which the developments

made in this thesis are based on, from the beginnings of magnetic resonance

imaging (MRI) to the more recent models and techniques.

The development of MRI as we know it today started about a century ago

and relied on the works of many individuals. In the 1930s, I.I. Rabi, which is

credited for the discovery of nuclear magnetic resonance (NMR), developed

a new way to measure the magnetic properties of nuclei. In his experiments,

he noted that "If a small oscillating magnetic field is applied at right angles to
a much larger constant field, a re-orientation of the nuclear spin and magnetic
moment with respect to the constant field will occur when the frequency of the
oscillating field is close to the Larmor frequency of precession of the particular
angularmomentum vector in question." [1]. This observationwill be at the core
of the further developments that led to MRI. These experiments employed the

concept of the Larmor frequency

𝜔0 = 𝛾𝐵0, (1)

where 𝛾 is the gyromagnetic ratio of a nuclei and 𝐵0 the external mag-

netic field. The speed at which the net magnetization returns to its initial

maximum value 𝑀0 is linked to the spin-lattice relaxation time constant 𝑇1.

During the 1940s, F. Bloch and E. Purcell independently conducted ex-

periments to further describe the NMR phenomenon in solids and liquids.

Bloch derived formulas, known as the Bloch equations, describing the effects

the precession and relaxation after an RF pulse on the net magnetization [2].

These equations are explained in more detail in Appendix A.1. Despite being

targeted towards physical applications (not physiology, medicine, or biology)

their research laid the groundwork for the development of MRI scanners ca-

pable of using the intrinsic water content within the body to create magnetic

resonance images. It is not until the 1950s, with G. Lindström and E. Odeblad,

that NMR was considered to study biological tissues. In an article where they

studied different biological samples, they theorized that the differences in wa-

ter and biological tissue response were due to distinct tissues absorbing and

organizing water molecules differently. [3]

In the same years, E. Hahn discovered an echo after two 90° radio frequency

(RF) pulses (see Appendix A.2 for more information about RF pulses). The am-

plitude of this signal decreased with the echo time (TE), i.e., the time between
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the excitation pulse and the peak of the signal

𝑆0 ∝ 𝑀0𝑒−𝑇𝐸/𝑇2, (2)

where T2 is the time constant for spin–spin relaxation, specific to each tissue

type. This development will be known as the spin echo sequence.

In the 1970s, R. Damadian proposed that NMR could be leveraged to pro-

vide a non-invasive way of detecting cancers [4]. He then built the first full-

body machine and produced the first full magnetic resonance imaging (MRI)

scan.

Since its inception, MRI has garnered significant attention across various

scientific and medical domains due to its capabilities in diagnostic medicine

and biomedical research. Initially employed for anatomical imaging, MRI has

evolved to encompass a spectrum of sub-modalities aimed at exploring di-

verse aspects of cerebral function. These include functional MRI (fMRI) and

diffusionMRI (dMRI), which can respectively capture cerebral blood flow pat-

terns and neuronal pathways within the nervous system.

Diffusion MRI

In a cube filled with water, the water molecules are free to move in every

direction, a process known as free diffusion or Brownian motion (Fig. 1A).

The presence of obstacles or structure, such as cellular membranes, inside

the cube will hinder the movement of the water molecules, which will then

be categorized as restricted diffusion (Fig. 1B). The main challenge of diffu-

sion MRI is to decipher the information contained in the movement of those

water molecules to characterize the brain’s structure. By orienting magnetic

fields along different directions, the diffusivity of water molecules along those

directions can be quantified. This diffusivity is directly impacted by the struc-

ture inside each volume of the image reconstructed from the diffusion data,

i.e., voxel.

In 1965, E.O. Stejskal and J.E. Tanner derived the equation that will be

the basis for dMRI and introduced pulsed gradients into the spin echo se-

quence [5]. The addition of pulsed gradients in the spin echo sequence, schemat-

ically represented in Fig.2, gave the name pulse gradient spin echo (PGSE)

sequence. Stejskal and Tanner also proposed the idea of measuring restricted

diffusion of water molecules by varying the delay Δ between the gradient

pulses. The Stejskal-Tanner formula, describing the attenuation of the signal
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Figure 1: Representation of the movement of water molecules in a voxel withA free

diffusion and B restricted diffusion. Each color represents the trajectory

of a single molecule.

response of the echo 𝑆0 presented in Eq. (2), is written as

𝑆 = 𝑆0𝑒−(𝛾𝐺𝛿)
2(Δ−𝛿/3)𝐷, (3)

where the parameter 𝐷 represents the apparent diffusion coefficient along
a direction. The other parameters are the magnitude 𝐺 and duration 𝛿 of the

gradient pulses, separated by a time interval Δ, and 𝛾 the gyromagnetic ratio

of the proton H
+
, introduced in Eq. (1). Protons are used due to their magnetic

moment and abundance in the human body, primarily in the form of water

molecules.

90° 180°

TE/2
TE

TR

G
δ

Δ

Figure 2: Simplified representation of the main parameters of a Pulse Gradient Spin

Echo (PGSE) sequence. The two RF pulses generate a flip of 90° and 180°.

TR is the duration between repeated RF pulse sequences. Pulse gradients

are represented in grey.

Several parameters characterizing the magnetic field intensity are com-

monly grouped into a single value, called the b-value, expressed in 𝑠/𝑚𝑚2
.

𝑏 = (𝛾𝐺𝛿)2(Δ − 𝛿/3), (4)

The diffusivity specific to a direction can be obtained by employing en-

coding gradients along said direction. Water molecules diffusing in a certain

direction between the application of the two gradients, will not be correctly

rephased by the second gradient and the intensity of the echo obtained will
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be reduced. By taking multiple orientations into account and incorporating

Eq. (4), Eq. (3) can be rewritten as

𝑆 = 𝑆𝑜𝑒−𝑏𝐠̂
𝑇𝐃𝐠̂, (5)

with 𝑆0 the signal response of the echo without pulsed gradients and 𝑆 the
response signal along the direction 𝐠̂. The direction of the pulsed gradient is

referred to as b-vector

S/
S 0

Diffusivity [mm2/s]

A B

Figure 3: Representation of A the attenuation of diffusion signal depending on the

tissue diffusivity at different b-values (b=0,1000,2000,3000,5000). B Repre-

sentation of the directions (b-vectors) in a multi-shell sequence with the

same b-values. Each b-value is represented with a different color and ra-

dius.

The representation of Eq. (5) for different b-values in Fig. 3A demonstrates

that the two factors leading to a decreased echo signal are an increased diffu-

sivity along a specific direction and a higher b-value. By varying themagnetic

field intensity, differences in diffusivity between tissues can be highlighted.

As seen in Fig. 4, averaging the signal overmultiple directions highlight differ-

ent tissue types depending on the gradient intensity: high b-values can help

differentiate regions of low diffusivity, such as areas with densely packed neu-

ral fibers and low b-values help differentiate regions of high diffusivity such

as the cerebrospinal fluid (CSF). The ideal b-value to observe a specific tissue

is often considered to be

𝑏opt = 1/𝐷tissue,

which corresponds to the b-value with the highest slope for a specific diffu-

sivity. For more information on this topic, see Appendix A.3.
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Figure 4: 2D slice of the third quartile values of different shells withA b=0,B b=1000,

C b=2000, D b=3000 and E b=5000. The intensity was normalized between

0 and 1 for each shell to mitigate the effect of decreasing signal strength

at high b-values.

To leverage the sensitivity of b-values to different tissue diffusivities, mul-

tiple gradient values can be acquired within a single sequence, known as a

multi-shell sequence (see Fig. 3B). Due to their higher angular resolution,

shells with a high b-value require a higher number of directions to be investi-

gated. The main acquisition strategy to resolve multiple fiber orientations in

areas of crossing fibers is High angular resolution diffusion imaging (HARDI),

which samples the orientation space as densely and uniformly as is practical

to separate out the contributions of each fiber populations [6].

Microscopic orientation & structure

To decode the signal received from the scanner and translate it into useful

information about the structural properties of a voxel, two main approaches

have been developed: model-free techniques reconstructing the diffusionODF

(dODF) [6] and model-based techniques reconstructing the fiber ODF (fODF).

Techniques reconstructing the dODF are often grouped under the name

Q-space imaging (QSI), an umbrella term for methods measuring the micro-

scopic diffusion function without any assumptions on the form of the under-

lying diffusion function [7]. QSI uses the Fourier relation between the diffu-

sion signal and the spin propagator to measure the diffusion function by sam-

pling the diffusion signal on a three-dimensional Cartesian lattice. The peaks

in the dODF can be interpreted as the main fiber orientations of a voxel, since

these correspond to the directions of highest spin displacement. The draw-

backs of these methods are the long scan time requirements and the pulsed

field gradients required to fully characterize the spin propagator. In the early

2000s, D.S. Tuch introduced diffusion spectrum imaging (DSI, a variant form

of QSI) and q-ball imaging (QBI) [8]. QBI is a model-free approach using

the HARDI protocol and the Funk–Radon transform, capable of resolving in-
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travoxel white matter fiber architecture. Other techniques have since been

built upon this approach such as constant solid angle (CSA), which, by con-

sidering the solid angle factor, results in a sharper and normalized dODF ex-

pression [9].

More recently, methods decomposing the diffusion signal into a series expan-

sion of basis functions have emerged, such as 3D-SHORE and MAP-MRI [10].

On the other hand are model-based approaches. Since its introduction in

1994 by P.J. Basser, diffusion tensor imaging (DTI) [11] has remained the most

common fODF algorithm to inspect the main orientation of voxels in vivo.

DTI makes the assumption that the diffusion of water molecules in each voxel

can be approximated by a Gaussian distribution and consequently models the

diffusion coefficient 𝐃 as a diffusion tensor, defined by its three eigenvectors.

The anisotropy of the diffusion in white matter voxels is represented by an

ellipsoid aligned with the main orientation of diffusion. The amplitude of the

eigenvectors gives information about the diffusion properties associated to a

direction. See Appendix A.4 for more information about the formulation of

the diffusion tensor and its metrics.

The method is however based on hypotheses, and the more we deviate from

these hypotheses, the less DTI can adequately inform us on the structure in-

side the voxels, as the parameters estimated can only accurately represent the

microstructure if the hypothesis of the model are respected.

The first hypothesis is that the diffusion signal can be represented by a Gaus-

sian process. DTI is thus no longer correct whenwe deviate from theGaussian

fit of the response signal, which renders high b-values unusable for the DTI

fit. To account for the non-Gaussian behavior of biological tissue, diffusion

tensor imaging (DTI) was extended in a model called diffusion kurtosis imag-

ing (DKI) [12]. This model provides, in addition to the diffusion coefficient,

an estimate of the excess kurtosis of the diffusion displacement probability

distribution, representing the departure from the Gaussian process.

The second hypothesis is that a single diffusion tensor can approximate the

diffusion signal. This hypothesis renders DTI unable to discern multiple fiber

orientations inside a single voxel, as the signal arising from multiple fixels

will be merged together. DTI is thus limited in regions of crossing fibers,

which represent 70% to 90% of all voxels in the brain [13]. Theoretically, by

increasing the resolution, the number of voxels with crossing fibers can be

reduced, but this increases scan time.

This limitation is extended to the partial volume effects caused by the pres-

ence of other tissue types, such as CSF, within a voxel. To address these partial

volume effects, models started including multiple compartments.
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Multi-compartment models

Multi-compartment models consider that the response signal is the sum of

the signals of different compartments, each with its own response type. To

include multiple compartments into the response signal, the equation for the

received signal can be rewritten as

𝑆 =
𝐶
∑
𝑖
𝑓𝑖𝑆𝑖, with

𝐶
∑
𝑖
𝑓𝑖 = 1. (6)

with 𝐶 the number of compartments, 𝑓𝑖 the volume fraction of the signal

attributed to each compartment and 𝑆𝑖 the signal of each compartment ap-

proximated with a model, as in Eq. (5).

To improve the fit of DTI in regions in areas with partial volumes effects,

such as the fornix or other areas along the ventricles, DTI can be modified

to account for a second isotropic tensor with a fixed diffusivity, set to the

diffusivity of free water [14]. Equation (6) becomes

𝑆 = (1 − 𝑓𝑖𝑠𝑜)𝑆0𝑒−𝑏𝐠̂
𝑇𝐃𝐠̂ + 𝑓𝑖𝑠𝑜𝑆0𝑒−𝑏𝐷𝑖𝑠𝑜 ,

where 𝑓𝑖𝑠𝑜 the volume fraction of the isotropic compartment, with a con-

stant diffusivity 𝐷𝑖𝑠𝑜 across all directions.

Another notable example is NODDI [15], which considers three compart-

ments, each with its own volume fraction: an intra-cellular compartment rep-

resenting neural fibers as a Watson distribution of sticks, an extra-cellular

compartment which is depicted as an anisotropic Gaussian diffusion tensor

and an isotropic compartment, with an isotropic Gaussian diffusion tensor.

Multi-fixel models

While models such as NODDI can represent the dispersion of the orientation

of the neural fibers, these models are still limited to a single main orienta-

tion. Other multi-compartments approaches have been developed to account

for multiple orientations in a voxel. These approaches will be referred to as

multi-fixel, short for multiple fiber populations in a voxel. By allowing mul-

tiple fiber population per voxel to contribute to the signal, each with its own

main diffusion orientation, they overcome the limitation observed with DTI

in regions of crossing fibers.

The simplest types of multi-fixel models are dual- or multi-tensor models

(MTM) [16]. These models extend the tensor model by allowing multiple

diffusion tensors within each voxel. For these models, Equation (6) can be

rewritten as
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𝑆 = 𝑆0
𝐾
∑
𝑘
𝑓𝑘𝑒−𝑏𝐠̂

𝑇𝐃𝑘 𝐠̂,

with 𝐾 the number of compartments and 𝑓𝑘 their corresponding volume

fraction. Similarly to the single-fixel models, additional compartments can be

added to the multi-fixel models, to account for other partial volume effects,

such as an isotropic compartment

𝑆 = 𝑆0(

𝐾
∑
𝑘
𝑓𝑘𝑒−𝑏𝐠̂

𝑇𝐷𝑘 𝐠̂ + 𝑓𝑖𝑠𝑜𝑒−𝑏𝐷𝑖𝑠𝑜 + ...
)
.

with the number of compartments being equal to or greater than the num-

ber of fixels (𝐾 ≤ 𝐶).

A multitude of multi-fixel models have been developed over the years,

each designed for specific use cases, with distinct hypotheses and limitations.

The ball-and-sticks model can be viewed as a special case of MTM, where the

fixels, i.e., sticks, are represented as Gaussian tensors with no radial diffusivity
and the ball is an isotropic Gaussian [17]. It mainly aims at resolving crossing

fibers and estimating their relative volume fractions.

The CHARMED model can use any combination of restricted or hindered

compartments, respectively estimated with the diffusivity in thin cylinders,

with a fixed distribution of axon diameters, and anisotropic Gaussian diffu-

sion tensors [18]. The main orientation and volume fractions of each com-

partment are also estimated. The AxCaliber model extends the CHARMED

model to account for the heterogeneity of axon diameters [19].

DIAMOND [20] expands on MTM models by including heterogeneity into

each compartment. The compartments are modeled by a finite sum of uni-

modal continuous distributions of diffusion tensors. The matrix 𝐃 is thus re-

placed by a matrix-variate Gamma distribution over matrices 𝐃 with a mean

𝐃𝟎. By combining elements of the continuous and discrete representations,

i.e., modeling the fODF as a discrete set of fiber populations each with its own

amount of dispersion, models such as DIAMOND are approaching the char-

acteristics of a continuous fODF.

The previous models can be described as analytical models since changes

in diffusivity can only be expressed as a mathematical function with certain

assumptions. Another angle of approach is to simulate the diffusion of wa-

ter molecules in various environments and then match these simulations to

the diffusion signal received. An example is Microstructure Fingerprinting

(MF) [21], which uses dictionarymatching of pre-computedMonte Carlo sim-

ulations with different configurations to identify the parameters that best de-
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scribe the underlying microstructure in each voxel. In the dictionary, the

structure within the voxels is represented by cylinders aligned with the main

diffusion direction. The selected diffusion fingerprints provide an estimation

of themicrostructural parameters for each fascicle of axons present in a voxel.

While multi-fixel models can more accurately describe the organization

of white matter fibers, particularly in areas of crossing fibers, they also in-

troduce increased complexity when interpreting the results. Since each fixel

has its own microstructure, correspondence issues between voxels and the

increased number of outputs can make the process of producing maps for

clinical applications more complex. One possibility is to produce mean maps

of fiber properties per voxel. Or, if used in combination with tractography, to

follow these metrics along the tract of interest, which will be investigated in

Chapter 3.

Spherical deconvolution

Most of the previous models provide a “discrete” amount of fiber popula-

tions, typically two or three for most MTMmodels, as increasing the number

of fixels above this number tends to decrease their performance. However,

other models can provide a “continuous” representation of the fiber orienta-

tion information, without restricting the number of fixel per voxel. The pri-

mary type of approach is based on the deconvolution of the diffusion signal

into spherical harmonics (see Appendix A.5 for more information), a method

known as spherical convolution (SD). The initial SD implementation for dMRI

was proposed by Tournier & al. in 2004, the algorithm expresses the signal

measured as the convolution over spherical coordinates of the response func-
tion with the fODF [22]. The response function is an essential part of this

algorithm and describes the signal intensity that would bemeasured as a func-

tion of orientation for a single fiber population. In the algorithm proposed by

Tournier et al., the response function is determined using a subset of voxel

presenting a high FA, hopefully representing white matter areas where there

are no crossings. Other approaches have employed spherical deconvolution

with alternative response functions, such as the FORECAST model, which

utilizes diffusion tensors, similar to those in DTI, as response functions [23].

Additionally, blind methods have been developed to estimate the peaks of the

fODF without any explicit response function [24]. More information on the

response functions can be found in Appendix A.6. In 2007, the authors of

the original SD paper introduced constrained SD (CSD). As the name implies,

they added a non-negativity constraint to reduce the impact of noise and in-

crease the angular resolution [25]. Further improvements were made to CSD

to make full use of multi-shell information, such as multi-shell multi-tissue
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CSD (MSMT-CSD) [26], which uses three types of response function, one for

the CSF, one for the grey matter and one for the white matter. While the WM

response function is still modelled with series of SH coefficients, the GW and

CSF are modelled using an SH series of order 0. MSMT-CSD thus entails the

estimation of multiple response functions as response functions are required

both as a function of b-value and per-tissue type. Originally, the per-tissue

response functions were determined using a four-tissue segmentation of a

structural image and applying volume fraction and FA thresholds to select

reference voxels, but can now also be determined using the segmented dMRI

data.

Other attempts have been made to generalize the multi-tissue spherical de-

convolution into an unsupervised blind source separation problem, which

does not enforce the response function to be known a priori [27].

The SD-based approaches mentioned focus more on discerning the ori-

entation of fibers within a voxel and less on the microstructural properties

of these fibers. However, beyond orientation, the amplitude of the signal re-

sponse obtained from the peaks estimated can offer an indirect measure of the

microstructural characteristics associated with those peaks. The hindrance

modulated orientational anisotropy (HMOA) [28] and the apparent fiber den-

sity (AFD) use the amplitude of each fODF lobe, found by methods such as

CSD, as a quantitative measure of neural density [29]. This definition of AFD

is susceptible to minor changes in the spread of the fODF, as even minor

increases in dispersion can dramatically reduce the amplitude of the peak.

To increase the robustness of the estimated fiber density, the AFD can also

be computed by integrating the fODF over the solid angle corresponding to

each fODF lobe. A recurring theme in dMRI metrics is that they are sensitive,

but not specific. AFD acknowledges this limitation by encompassing various

biological changes under a single umbrella term. AFD is thus sensitive to the

intra-axonal volume fraction of the underlying fiber populations, which can

be due to partial volume effects, fiber packing or overall density.

Other approaches have leveraged spherical deconvolution, such as [30],

which used it speed up multi-diffusion-tensor fitting.

Macroscopic orientation

The aforementioned algorithms retrieving the fODF can be used to visualize

the potential pathways of neural fibers and their connections between vari-

ous brain regions, a technique known as tractography.
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Conceptually, tractography algorithms piece together themicrostructural ori-

entational information collected in each voxel to generate streamlines repre-

senting the course of a bundle of axons across multiple white matter voxels

(Fig. 5). A whole-brain tractogram is displayed in Fig. 5. Starting points, i.e.,

seeds, are placed at specified locations or throughout the white matter. For

each seed, a pathway called streamline is then constructed by taking a step of
fixed size in the main direction of the voxel. This pathway can be constrained

by the placement of anatomical regions, known as exclusion or inclusion re-

gions, which respectively remove streamlines that do or do not pass through

them. In addition to the seeded region and inclusion or exclusion zones, the

main parameters influencing the overall appearance of the tractogram are the

step size, the maximum angle between two steps and the termination condi-

tion.

These parameters are usually fixed values requiring extensive fine-tuning.

A modified version of the tracking algorithms, investigating the impact of

position-dependent parameters, will be described in Chapter 1.

Figure 5: Whole brain tractogram obtained with a probabilistic tractography algo-

rithm in A sagittal, B coronal and C axial view. The color are assigned

based on the segment direction: left-right (red), anterior-posterior (green)

or inferior-superior (blue).

Similarly to the microscopic orientations, tractography can account for

either the main voxel direction or multiple possible directions for each step,

it is then called deterministic or probabilistic tractography, respectively.

Deterministic tractography is a set of methods where the local tract di-

rection is defined only by the main diffusion direction in each voxel. The

first implementations appeared shortly after the DTI model and could infer

macroscopic connectivity between regions by following the principal eigendi-

rection of the estimated diffusion tensor in each voxel [31]. The streamlines

are often smoothed using B-spline functions to approximate the noisy trajec-
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tory. The termination conditions often include: reaching the boundary of the

imaging volume, reaching a region with low diffusion anisotropy, the angle

between two steps being higher than the specified angular threshold, and the

most collinear eigenvector not being associated with the largest eigenvalue.

Not all deterministic methods are limited to a single orientation per voxel.

The SD-STREAM algorithm takes as input the fODF image obtained with

CSD and, at each step, locates the orientation of the nearest fODF amplitude

peak, enabling it to sample multiple orientations while remaining determinis-

tic. Nonetheless, most deterministic tractography algorithms suffer from the

same limitations: the inability to follow less-dominant tracts in crossing and

fanning fibers regions, early termination of streamline in regions of low FA if

the cutoff is set to a FA threshold and no tracking in regions of low anisotropy,

such as the interface between white and grey matter.

Probabilistic tractography bypasses these limitations by locally estimat-

ing a probability density function (pdf ), or probability mass function (pmf )
when the tracking directions are restricted to a discrete number of points on

a sphere, in each voxel, corresponding to the main fiber orientations and the

respective uncertainty associated to each peak. At each tractography step, a

random sample is selected from the pdf with the probability of selecting a

particular direction being proportional to the amplitude of the fODF along

that direction, and a new point is generated. This process continues until the

stopping criterion is met [17]. Thereby incorporating the uncertainty in local

fiber direction into the streamline generation process. The random sampling

in the pdf results in varying output between repeated tractographies. While

probabilistic tractography overcomes many of the limitations inherent to de-

terministic tractography, it has the downside of generating a higher number

of false positive streamlines due to the increased number of possible direc-

tions.

Over the years, numerous variations of the classic probabilistic algorithm

have been introduced. A notable example is the iFOD2 algorithm [32], which

is based on 2nd order integration over fiber orientation distributions. Rather

than sampling from the local fODF only, the probability of each path is com-

puted as the product of the probabilities of each step making up that path.

This reduces the overshoot in tracts of high curvature and increases the con-

tinuity in crossing fascicles.
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Post-tractography algorithms

Once a set of streamlines is obtained, further post processing can be applied

on those streamlines depending on their intended research purpose.

Quantitative filtering

If the quantity of connections between regions is of interest, then quantitative

filtering is recommended. Tractography is first and foremost a visual repre-

sentation of the likely pathways between brain regions. This representation

has several biases based on the type of tractography used and the parameters

selected. Algorithms can help mitigate those biases to allow for the number of

streamlines between two regions to be a more accurate measure of the quan-

tity of neural fibers connecting those regions.

Notable examples are SIFT [33] and SIFT2 [34]. SIFT filters out streamlines

from the tractogram to improve the fit of the fiber density between the stream-

line reconstruction and the spherical deconvolution of the diffusion signal,

thereby improving the biological accuracy of structural connectivity estimates.

SIFT2 further improves this process by replacing the removal of streamlines

with the attribution of weights to each streamline. Both of these methods

need to be applied on whole brain tractograms.

Other algorithms providing quantitative filtering include COMMIT [35] and

COMMIT2 [36]. Both procedures consist of a whole-brain optimization pro-

cess combining tractography with microstructural features to enhance the

robustness of connectivity estimates. COMMIT2 adds anatomical priors to

this process to reduce the number of erroneous streamlines.

Tract isolation

If the connections and properties of specific tracts are the focus of the study,

then the individual connections can be isolated from awhole brain tractogram

either by manually adding inclusion or exclusion regions, or by using tools

such as the white matter query language WMQL [37]. WMQL uses a labeled

atlas to define tracts of interest in a more human-readable manner using re-

gions of inclusion and exclusion defined by their anatomical names, but also

using spatial keywords such as posterior, anterior, left, right, inferior, and

superior.

Tract clean up

When the streamlines of interest have been extracted, stray streamlines can

often appear, requiring the use of additional exclusion or inclusion zone in
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the extraction process. This iterative process can be time-consuming and re-

quires expert knowledge to ensure accuracy. Fortunately, there are methods

available to eliminate stray streamlines without necessitating the definition

of additional inclusion or exclusion zones. The existing processes allowing

for an automated clean up, as well as a new algorithm, will be further ex-

plained in Chapter 2.

An overview of this thesis’ context

Overall, the models presented in the previous sections, whether mathematical

or biophysical, are all based on fixed hypotheses and were developed to de-

scribe the orientation or microstructure of specific tissue types. The selection

of a model must take into account the microstructural properties to be ob-

served, the acquisition protocol, and the limitations of eachmodel [38, 39, 40].

This thesis builds upon this environment and aims to address some of the

limitations in the applicability of the aforementioned micro- and macrostruc-

tural models (Part I). The main focus will be on white matter models with

multiple orientations to account for crossing fibers. And the combinations

of these microstructural models with macrostructural information, to study

populations with neuropathological brains (Part II). An overview of the fields

adjacent to this thesis is schematically represented in Fig. 6.

Figure 6: Schematic representation of the topics of interest in this thesis with exam-

ples of themodels and algorithms (in grey) and the corresponding chapters

(in orange).
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Part I

Methodology

"Made up of a dozen billion microscopic nerve-cell units intercon-
nected bymillions uponmillions of conducting nerve-threads weav-
ing incredibly intricate patterns, the brain, as an object of research,
presents a defiant challenge to its own ingenuity."

-William Feindel, 1975
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Part I

To unravel the complex network of neural fibers and their microstruc-

tural properties, and thereby inching closer to a deeper understanding of the

brain and the intricate patterns of its neural pathways, several algorithms,

approaches and framework were developed.

First, in Chapter 1, the tractography algorithms themselves and the pos-

sible improvements in terms of obtaining specific neural fiber bundles were

investigated. To illustrate the potential applications of a modified tractogra-

phy algorithm, the focus was placed on short association fibers in the subcor-

tical white matter, also known as U-fibers, depicting the connections between

neighboring gyri. The tractography of U-fibers is challenging due to the ge-

ometry of the cortical folds and the sharp turns along the cortical surface.

Increasing the maximum angle between tractography steps to generate these

streamlines also increases the occurrence of biologically implausible stream-

lines. To mitigate this issue, we propose to replace the fixed maximum angle

value in tractography algorithms by an angular map, allowing higher angles

at the interface between grey and white matter. This enables a more accurate

tracking of U-fibers, while keeping a low number of false positive streamlines.

Although the angular map was designed to increase the probability of obtain-

ing U-fibers, the proposed algorithm can also be applied to other purposes,

such as allowing different angles in other brain areas depending on the in-

tended application.

Another approach to remove those spurious streamlines is to apply post-

tractography filtering algorithms. Such a method is described in Chapter 2,

where a filtering algorithm based on streamline orientation and density along

an average trajectory was developed. Tract extraction fromwhole-brain trac-

tograms requires either an extensive knowledge of inclusion and exclusion

zones or manual efforts to obtain clean tracts. The automated filtering of

spurious streamlines can accelerate this extraction process. The proposed al-

gorithm is applicable to a wide variety of tracts with a high and low density. It

offers efficient filtering and provides a conservative filtering preserving tract

morphology. Additionally, the computed average trajectory enables the anal-

ysis of metrics in multi-fixel models along the tract pathway.

The tracts obtained with the methods developed in Chapter 1,2 benefit

from the advances in MRI technology, which have enabled richer multi-shell

sequences to be implemented in diffusion MRI, allowing the investigation of

both the microscopic and macroscopic organization of the brain white mat-

ter. Furthermore, the emergence of advanced diffusion models has enabled

a more detailed analysis of brain microstructure by estimating the signal re-

ceived from a voxel as the combination of responses from multiple fiber pop-
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ulations. However, disentangling the individual microstructural properties

of different macroscopic white matter tracts where those pathways intersect

remains a challenge. In Chapter 3, we introduce a framework combining the

microscopic and macroscopic scales to unravel multi-fixel microstructure by

utilizing tractography. The framework includes a new algorithm, estimating

the microstructure of a specific white matter tract with angular weighting.

Our framework grants considerable freedom as the inputs required, a set of

streamlines defining a tract, such as the ones in Chapter 1,2, and a multi-

fixel diffusion model estimated in each voxel, can be defined by the user. The

framework also provides estimations of the microstructure at the streamline

level, volumetric maps for visualization and mean microstructural values for

the whole tract. The angular weighting algorithm shows increased accuracy,

robustness to uncertainties in its inputs and maintains similar or better re-

producibility compared to commonly used analysis approaches. UNRAVEL

will provide researchers with a flexible and open-source tool enabling them

to study the microstructure of specific white matter pathways with their dif-

fusion model of choice.
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Chapter I

Tractography of the subcortical U-fibers using a
position-dependent maximum angle

Extended version of an abstract accepted as:
Delinte N, Dessain Q, Dausort M, Vanden Bulcke C, Macq B (2023) Tractogra-

phy of the subcortical U-fibers using a position-dependent maximum angle.

Proc. Intl. Soc. Mag. Reson. Med. 31 [41]
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1.1. INTRODUCTION

1.1 Introduction

Subcortical U-fibers are short association fibers within the cortex or in the

outer parts of the subcortical white matter, representing connections between

neighboring cortical areas [42]. These U-fibers are thought to be involved

in multiple neurological and psychiatric diseases, such as in multiple sclero-

sis [43] and Alzheimer’s disease [44]. Through a process known as tractogra-

phy, diffusion MRI enables the visualization of potential neural connections

between brain regions. While this has been extensively investigated for long-

range association connections within deep white matter [45, 46, 37, 47, 48],

where tracts predominantly consist of mostly straight fibers occupying large

volumes, tracking U-fibers is accompanied by additional difficulties. In con-

trast to the relatively straightforward geometry of major white matter tracts,

tracking U-fibers presents a more intricate challenge due to the geometry of

the cortical folds, requiring sharp turns to cover the cortical surface [49]. Ob-

taining U-fibers in a whole-brain tractogram requires a higher maximum an-

gle between tractography steps to follow subcortical fibers along the cortical

folds. However, a higher maximum angle increases the probability of gener-

ating spurious streamlines, increasing the post-processing steps required to

refine the obtained tracts.

Recently, there has been a renewed interest in the tracking and classi-

fication of short association fibers, with the creation of U-fiber specific at-

lases [50] and the development of methods aimed at filtering out spurious

streamlines from U-fiber bundles [51]. These methods often use atlas-based

approaches to delineate the localization of U-fiber bundles, then compute the

distance for each streamline within the bundle to an average centroid stream-

line to remove streamline with distant shape, end points or trajectory.

Other approaches combine post-tractography algorithmswith anatomical pri-

ors on the cortical parcellations, end points and streamline lengths character-

izing short association fibers. For example, in [52], the authors used, amongst

other criteria, surface seeding and streamline length to obtain whole-brain U-

fiber tractograms. However, these methods often require either a long com-

putation time, or involve multiple steps or programs.

Another approach to address the issue of varying optimal tractography pa-

rameter values across different white matter regions is to generate multiple

tractograms, each using its own set of parameters, and then combine the out-

puts before filtering redundant streamlines, a process known as Ensemble

Tractography [53].

In contrast, less effort has been directed towards directly adapting trac-

tography algorithms to increase the probability of generating U-fibers within
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whole-brain tractograms. We propose to replace the fixed maximum angle

value in tractography algorithms with an angular map, thereby allowing dif-

ferent values of maximum angle between tractography steps depending on

the position in the brain. Allowing a higher angle at the interface between

grey and white matter while keeping lower values in deep white matter en-

ables a more accurate tracking of subcortical U-fibers in whole-brain trac-

tograms, while keeping a low number of false positive streamlines. This con-

ceptually simple modification does not rely on predefined atlases or require

any other additional programs or imaging modalities.

1.2 Theory

The proposed modification relies on two core concepts, the modified tractog-

raphy algorithms and the creation of the variable angle maps used as inputs.

1.2.1 Modified tractography algorithm

Figure 1.1: Schematic representation of A the available new directions from a di-

rection 𝐝̂, the probability mass function (pmf ) and the maximum angle

𝛼 in B different points of the brain.

The proposed modification is compatible with most tractography algo-

rithms, as the maximum angle is a widely used concept in tractography. In

this case, we adapted the probabilistic tractography algorithm fromDIPY [54]

to allow arrays in addition to single scalar values as input parameter for the

maximum angle variable 𝛼𝑚𝑎𝑥 . The maximum angle variable becomes an an-
gular map dependent on the position (𝑥, 𝑦, 𝑧) of the tractography step

𝛼𝑚𝑎𝑥 → 𝛼𝑚𝑎𝑥(𝑥, 𝑦, 𝑧),

which impacts the adjacency matrix 𝐌adj ∈ {0, 1}𝑑×𝑑 used to compute the

allowed directions from the current direction 𝐝̂ (Fig. 1.1A). In the original
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1.2. THEORY

algorithm, a single adjacency matrix associated with the 𝛼𝑚𝑎𝑥 value was de-

fined, where each pair of directions (𝑑, 𝑑) was assigned a value of 0 if the

angular distance between them exceeded 𝛼𝑚𝑎𝑥 , and 1 otherwise. To avoid

computing an adjacency matrix for each voxel, a dictionary of adjacency ma-

trices is precomputed for each integer angle present in the angular map. The

probability mass function pmf, representing the probability of each discrete

direction to be selected, bounded by 𝛼𝑚𝑎𝑥 is obtained by

pmflim = pmf(𝑥, 𝑦, 𝑧) ∗ 𝐌adj(𝛼max(𝑥, 𝑦, 𝑧), 𝐝̂).

The new direction is then selected amongst the directions which have a

pmflim > 0 in a classic probabilistic tractography approach. Since the maxi-

mum angle 𝛼𝑚𝑎𝑥(𝑥, 𝑦, 𝑧) is dependent on the position, different points in the

brain now possess different pmf profiles, as displayed in Fig. 1.1B.

1.2.2 Creation of the angular map

Several methods can be employed to create an angular map, including uti-

lizing white matter masks, whole-brain segmentation, or personalized ap-

proaches tailored to specific use cases where the angle is required to change

in specific areas. Two approaches using only the diffusion data are described

below, although other approaches are possible depending on the intended end

result. In both cases, the intended purpose was to increase the maximum an-

gle along the cortical folds enabling streamlines to follow the sharp cortical

turns, characteristic of short association fibers.

Based on a whitemattermask Binary white matter masks can be used as

a basis for the creation of the angular map. In this case, the estimated white

matter fODF was utilized to create a binary mask.

The fODF estimated by CSD, onwhichmost tractography algorithms rely, can

be represented in its spherical harmonics form. In this representation of the

white matter fODF, areas with a higher intensity in the order 0 correspond to

areas of white matter. By applying a threshold to these maps, an approximate

white matter mask can be obtained. A threshold near the default value of

0.1 is recommended for white matter segmentation. Increasing this threshold

will extend the cortical depth with a higher maximum angle, whereas lower-

ing it will decrease the cortical depth. An angular map can then be derived

from the white matter mask by applying the steps described in Algorithm 1.

An example of an angular map obtained from a binary mask generated

from the white matter fODF obtained with MSMT-CSD with an intensity

threshold set to 0.1 is shown in the top row of Fig. 1.2. Using this approach,
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Figure 1.2: Creation of angular maps with a higher maximum angle near the cor-

tical surface from the fODF (A) with a binary white matter mask and

a multi-tissue segmentation. The masks created from the fODF (B) are
transformed through a series of operations, described in Algorithm 1, to

obtain maps with a variable maximum angle (C).

white matter near the CSF and in the corpus callosum is considered to be su-

perficial, i.e., near the white matter interface, and is affected by the increased

maximum angle.

Based on brainmulti-tissue segmentation Beyond binarymasks, multi-

tissue brain segmentation can also be employed. The separation of the three

tissues into separate response functions in MSMT-CSD can be utilized to give

an approximation of white matter, grey matter and CSF segmentation by us-

ing the order 0 of the white matter fODF and the estimated partial volumes of

GM and CSF, respectively. The steps to obtain the angular map are described

in Algorithm 1.

The resulting angular map is similar to the angular map obtained with the

binary mask, with a higher angle near the cortical surface. The difference lies

in the areas near the ventricles, which are no longer considered to be near the

cortical surface and thus no longer have the higher maximum angle (bottom

row of Fig. 1.2), and in the cerebellum, which now benefits from an improved

white matter, grey matter segmentation.
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1.3. MATERIALS & METHODS

Algorithm 1 Angular map creation

Require: ODFWM, AND (ODF𝐺𝑀 , ODF𝐶𝑆𝐹 OR threshold)
if ODF𝐺𝑀 , ODF𝐶𝑆𝐹 ∄ then

grey_matter = ODFWM[0] < threshold
white_matter = ODFWM[0] >= threshold

else
seg = argmax(ODFWM[0], ODF𝐺𝑀 , ODF𝐶𝑆𝐹 )

grey_matter = seg == 1

white_matter = seg == 0

end if
dilate(grey_matter, 4mm)

map[white_matter] = min_angle
map[grey_matter] = max_angle
angular_map = gaussian_smoothing(map)
return angular_map

1.3 Materials & Methods

1.3.1 Datasets

Themethodology described in the previous sectionwas applied to two datasets

to visualize the results on in vivo and synthetic diffusion data.

Experiment I: In vivo

In the first experiment, an in vivo dMRI scan of a healthy adult participant

was performed on a 3T GE SIGNA Premier scanner with the following pa-

rameters: TR = 4842 ms, TE = 77 ms, 2 mm isotropic voxels (in-plane FOV:

220x220 mm
2
), Δ = 35.7 ms, 𝛿 = 22.9 ms, 64 gradients at b = 1000, 32 at b =

2000, 3000, 5000 s/mm
2
, and 7 interspersed b0 images. Preprocessing included

thermal denoising [55], Gibbs ringing correction [56], eddy-current distortion

and movement correction [57]. A 3D T1 image (TE = 2.96ms, TR = 2188.16ms,

TI = 900ms, 156 slices, 1mm isotropic, in-plane FOV: 256x256mm
2
) was also

acquired.

To study the impact of the proposed algorithm on short association fibers,

three regions of interest (ROIs) were placed in the hand motor cortex, so-

matosensory cortex and in the middle frontal gyrus to isolate U-fibers be-

tween adjacent gyri. The right middle frontal gyrus was chosen for its role in

numeracy [58], which is linked to hand motor function [59].

To analyze the impact on long association fibers, the frontoparietal part of the

arcuate fasciculus (AF) tract was extracted from thewhole-brain tractography

27



Chapter I

using White Matter Query Language (WMQL) [37]. The regions defining the

AF were derived from the FreeSurfer parcellation of the Desikan-Killiany at-

las [60].

The angular map (Fig. 1.3B), obtained with the binary white matter mask

approach, was utilized in the modified probabilistic tractography algorithm.

Figure 1.3: Whole-brain tractogram of a healthy participant with A directional col-

ors and B the varying maximum angle with low values (in red) in the

deep white matter and higher values (in blue) near the cortical folds.

Experiment II: Synthetic phantom

Secondly, a synthetic phantom from the Diffusion-Simulated Connectivity

(DiSCo) dataset [61] (Fig. 1.4A) was used to compare the connectivity mea-

sures of 16 regions to a known ground truth. The dMRI protocol was com-

posed of 360 gradients, equally spread over 4 b-value shells at b=1000, 1925,

3094, 13191 s/mm
2
. The DiSCo1 phantom was selected in the 2x2x2mm res-

olution to match the resolution of the in vivo dataset. The tractography was

performedwith andwithout the addition of Rician noise on the diffusion data,

with a signal-to-noise ratio (SNR) of 10.

The resulting angular map, also obtained from a binary white matter

mask, and tractogram are displayed in Fig. 1.4.

1.3.2 Local modeling & tractography

In both the in vivo and synthetic data, themulti-shell multi-tissue constrained

spherical deconvolution (MSMT-CSD) [26] algorithm was utilized for the es-

timation of the white matter fODF. The modified probabilistic tractography

described in the previous section was tested with angular maps based on a

binary white matter mask derived from the white matter fODF obtained with
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Figure 1.4: Tractogram of the DiSCo1 dataset using the varying angle withA direc-

tional colors and B the varying angle values of the angular map. Low

and high maximum angle values are represented in red and blue, respec-

tively.

MSMT-CSD with a threshold of 0.08. The python implementation used for

the creation for the angular map is open-source and available
1
. The maxi-

mum angle was set to be within 15°< 𝛼𝑚𝑎𝑥 <30°. The results were compared

to the default probabilistic algorithm with 𝛼𝑚𝑎𝑥 =15°, 22° and 30°. In all cases,

seeds were placed inside the white matter mask based on the white matter

fODF with a density of 8 seeds per voxel.

The tractograms obtained from the synthetic dataset were filtered with

SIFT [33] and the connectivity matrix of the 16 regions of interest was com-

puted.

1.4 Results

1.4.1 In vivo: Short association fibers

The streamlines linking the motor cortex to the adjacent gyri isolated from

the tractogram in Fig. 1.3 are displayed in Fig. 1.5. The maximum angle of

15° (Fig. 1.5B) was too low to track the subcortical connections between the

hand motor cortex and somatosensory cortex due to geometry of the cortical

fold. A maximum angle of 30° (Fig. 1.5D) found a large number of connec-

tions between both regions but also produced several biologically implau-

sible streamlines passing through deep white matter regions. The varying

angle of the angular map ranging from 15° to 30° (Fig. 1.5A) produced no such

streamlines while connecting both gyri to the motor cortex. The angular map

also produced more streamlines than the intermediary value of 22° (Fig. 1.5C),

which presented less streamline density.

1https://github.com/DelinteNicolas/UTracto
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Figure 1.5: Streamlines connecting the handmotor cortex to the somatosensory cor-

tex and the frontal middle gyrus of a single subject obtained with A the

varying angle of the angular map ranging from 15° to 30° based on the

angular map, B a maximum angle of 15°, C a maximum angle of 22° and

D a maximum angle of 30°. All streamlines are colored using the angular

map used for A to show how the streamline would have been affected

by the varying angle.

1.4.2 In vivo: Long association fibers

In the main white matter tracts, such as the frontoparietal part of the AF

(Fig. 1.6), increasing the maximum angle produced more stray and biologi-

cally implausible streamlines (Fig. 1.6C,F). The angular map (Fig. 1.6A,D) pro-

duced more spurious streamlines than the 15° maximum angle, but less than

the 30° maximum angle. The angular map also provided a greater angle near

the cortex.

Figure 1.6: Tract of the frontoparietal part of the arcuate fasciculus of a single sub-
ject obtained with A,D the varying angle ranging from 15° to 30° based

on the angular map, B,E a maximum angle of 15°, and C,F a maximum

angle of 30°. All streamlines in D,E,F are colored using the angular map

used for A to show how the streamline would have been affected by the

varying angle.
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1.4.3 DiSCo Phantom

The connectivity matrices obtained in the DiSCo1 dataset in Fig. 1.7 showed

the lowest correlation to the ground truth with a maximum angle of 15°. This

angle also produced two false negatives between ROI 7 and ROI 2 & 4, which

are both adjacent to ROI 7 and require a high angle to connect. Using the an-

gularmap or the 30° angle produced similar scores, except for a higher number

of false positive streamlines in the 30° angle. Furthermore, the angular map

had a higher correlation, and less false positives and negatives compared to

the maximum angle of 22°.

Figure 1.7: Connectivity matrices of the DiSCo1 dataset with A the ground truth

values, B a maximum angle of 15°, C a maximum angle of 22°, D the

varying angle ranging from 15° to 30° based on the angular map and E a

maximum angle of 30°. All matrices are symmetric, and are normalized

to sum to one.

Fig. 1.8A illustrates the evolution of the interpolated number of false neg-

ative and false positive streamlines as the maximum angle was increased.

The number of false positives increased and the number of false negatives

decreased. At a maximum angle of 26°, all the streamline connections were

found and further increasing the maximum angle only increased the number

of false positives connections. The connectivity obtained with the angular

map also found all connections but with a lower number of false positives,

with 48 false positives compared to the 57 found at 26°.

The addition of Rician noise to the synthetic diffusion data displayed in

Fig. 1.8B increases the number of false positives connections, whereas the

number of false negatives decreases to zero for every angle between 15° and

30°. The number of false positives obtained with the angular map is similar to

the value obtained for amaximum angle of 22°. The correlation increases from

0.62 to 0.91 as the maximum angle increases from 15° to 30°. The connectivity

matrix obtained with the angular map presents a score of 0.89.
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Figure 1.8: Plot of the average number of false negative (dashed line) and positive

(solid line) streamlines in the connectivity matrix of the DiSCo phantom

estimated with a maximum angle ranging from 15° to 30° forA noiseless

data andB SNR=10. The values are interpolated from the values obtained

at 15°, 18°, 22°, 26° and 30°. The number of false positives (∙) and false

negatives (◦) of the angular map are represented with dots.

1.5 Discussion

1.5.1 Increased accuracy for U-fibers

The adjustment made to the tractography algorithm demonstrated the ability

to decrease the number of biologically implausible streamlines in whole-brain

tractograms, while allowing a higher maximum angle near the cortical sur-

face necessary for tracking U-fibers. Thereby limiting the need for exclusion

zones or additional post-processing steps. Its performance in capturing short

association fibers was above the results of tractograms generated using a sin-

gle maximum value. While the modified algorithm had a minimal impact on

long association fibers, it did lead to a slight increase in the number of spuri-

ous streamlines.

In the synthetic phantom experiment, the angular map combined the desired

properties of low and high maximum angles, resulting in a low number of

false positives and false negatives streamlines. Without using the angular

map, exceeding a maximum angle of 26° only resulted in more false positives

without improving accuracy. Therefore, the optimal single value for the max-

imum angle falls within the lower range, depending on whether the goal is

to minimize false positives or false negatives. The angular map bypasses this

trade-off and allows users to get the benefits of both outcomes.

Furthermore, the configuration of adjacent ROIs in the phantom was similar

to the geometry presented by U-fibers, indicating that higher angles are re-

quired to avoid false negative streamlines.
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1.5. DISCUSSION

1.5.2 Flexibility of usage

While the experiments were designed around an increased probability of ob-

taining U-fibers with probabilistic tractography algorithms, the core concepts

in the methodology presented in this study offer considerable flexibility for

various applications. The angular maps generated can be used for other pur-

poses, such as enabling different angles in specific brain regions based on the

intended tractography goals. Whole-brain angular maps could be developed

based on anatomical knowledge of white matter tract properties and expert

consensus, providing a more tailored approach to tractography. Additionally,

the ability to create patient-specific angular maps could be useful for appli-

cations involving deformed brains.

To obtain a similar outcome without modifying the maximum angle, a vari-

able step size could be used instead. This method could prove beneficial for

tractography algorithms that would not rely on a maximum angle or would

not allow its modification.

Furthermore, the position dependency of the maximum angle can be applied

to most tractography algorithms, whether deterministic or probabilistic.

1.5.3 Low increase of computational cost

This flexibility and increased accuracy come with minimal additional com-

putational cost compared to other alternatives. Since the method is a di-

rect modification of the tractography algorithm, it does not require addi-

tional software, libraries, or a significant increase in computational resources.

In contrast, other methods such as Ensemble Tractography, which involve

additional steps or global optimization processes, often result in increased

complexity, memory usage, and processing time. The increased runtime and

memory usage of the proposed method are negligible.

1.5.4 Limitations & future perspectives

As previously mentioned, the modification of the tractography algorithmwas

exclusively applied to a traditional probabilistic algorithm. Investigating the

application of the same modification to more advanced algorithms, such as

iFOD2 [32] or PTT [62], would be of interest to determine whether similar

improvements are achieved or if the enhancements are more marginal.

Once the modification is applied to the iFOD2 algorithm, the results could be

compared to other U-fiber tractography tools, such as ’U-fiber analysis’ [63],

which combines multiple programs and algorithms to generate U-fibers. Al-

though this tool is limited to 16 U-fiber bundles, it could serve as a benchmark
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to compare the outputs between the proposed method and more complex ap-

proaches in these tracts.

The output tracts could also be compared to U-fiber bundle atlases [50] using

measures such as the cluster confidence index [64] for the resulting stream-

lines or by computing the average bundle of the minimum average direct-flip

distance [65] to a reference centroid streamline. These comparisons, along

with the methodology described in [51], or frameworks such as Tractome-

ter [66] could provide tools able to assess the impact of the proposed method-

ology compared to other approaches.

Regarding the specific application of this algorithm to short association

fibers, additional challenges persist, particularly in the context of group-wise

analysis of U-fibers as inter-subject variation in cortical folding introduces

further complexity to inter-participant analyses.

More generally, the angular maps created could benefit from more in-

formation, such as T1- or T2-weighted brain segmentation. The two methods

described to create the location-dependent parameter map in section 1.2.2 are

only two possibilities and were only based on diffusion data to show the im-

pact of the proposed addition to tractography without the need for external

tools or algorithms.

The addition of noise to the diffusion data reduced the number of false

negative connections and increased the number of false positives. Investigat-

ing lower ranges of maximum angle values might be beneficial when dealing

with noisy data.

1.6 Conclusion

This proof of concept demonstrated that simple modifications to tractogra-

phy algorithms could enhance accuracy and reduce the occurrence of spuri-

ous streamlines. The introduction of a position-dependent maximum angle

allows for a more precise streamline generation, making tractography bet-

ter suited for specific purposes. Specifically, in the case of short associations

fibers, allocating a higher maximum angle near the cortex enabled the gener-

ation of subcortical U-fibers along the cortical folds, while maintaining a low

number of false positive streamlines and with minimal impact on the track-

ing of long-range association fibers. Integrating this modification into other

tractography algorithms, alongside purpose-specific angular maps, has the

potential to improve the overall accuracy of the tractograms produced and

allow researchers to inspect the white matter tracts with greater ease.
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Filtering of spurious streamlines via streamline
orientation and pathway density

Extended version of an abstract accepted as:
Delinte N, Macq B (2024) Tractography of the subcortical U-fibers using a

position-dependent maximum angle. Proc. Intl. Soc. Mag. Reson. Med.

32 [67]
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2.1 Introduction

Probabilistic tractography has uncovered more neural pathways compared

to deterministic algorithms by allowing orientations associated with a lower

diffusivity to contribute to the propagation of streamlines. While this has en-

abled a more complete overview of the existing pathways, it has also brought

with it a higher number of false positive streamlines [68, 69]. In bundles ex-

tracted by targeting specific regions of interest (see Fig. 2.1A), these false pos-

itives often appear as spurious streamlines (Fig. 2.1B).

Previously, removing these unwanted streamlines from the obtained tract

required the addition of exclusion and inclusion zone to restrict the possible

pathway of the streamlines or the manual removal of each spurious stream-

line. Both of these methods are time intensive, require expert knowledge and

must be repeated for each tract or group of tracts.

Figure 2.1: A Extraction of specific white matter tracts from a whole-brain trac-

togram. B Examples of tractography bundles with spurious streamlines.

From left to right: anterior thalamic radiation, corpus callosum, fornix

and corticospinal tract.

More recently, automated filtering methods have been developed around

different strategies. Several approaches have investigated whole brain filter-

ing such as SIFT [33], COMMIT [35], and LiFE [70]. These methods aim to

improve the fit between streamline density and the spherical deconvolution

of the diffusion signal in each voxel. The increased biological accuracy can
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be increased either by selectively filtering out streamlines or reducing their

weights or radii. This ensures that areas with simpler microstructure are not

over-populated compared to regions of complex architecture, such as areas

presenting fiber crossings.

Another approach to obtain clean tracts is to extract streamlines based on

atlases. Several methods have been developed and most of these approaches

also provide the ability to perform along tract metric analyses. The TRActs

Constrained by UnderLying Anatomy algorithm (TRACULA) [45] was devel-

oped to automatically reconstruct a predefined set of 18 major white matter

pathways using dMRI data. Streamlines are generated through an atlas-based

segmentation approach of the brain. Additionally, the evolution of DTI met-

rics along these tracts is accessible in their framework.

Similarly, Automating Fiber-Tract Quantification (AFQ) [46] uses an atlas-

based segmentation to isolate and clean the streamlines of 18 predefinedwhite

matter tracts. AFQ provides along-tract analyses of the tract profile to com-

pare populations. The latest version of AFQ is now compatible with the white

matter tracts obtained from RecoBundles [71] and the tract profiles can be

obtained for tracts not predefined in atlases. RecoBundles is an algorithm

leveraging streamline-based registration and clustering to recognize and ex-

tract bundles using prior bundle models. The bundle shape priors are used to

detect similar streamlines and bundles in whole-brain tractograms. Another

method reliant on RecoBundles is Bundle analytics (BUAN) [47]. BUAN does

group comparisons of bundle profiles at specific locations obtained with Re-

coBundles and can return p-values of the difference between two populations

in each of the bundle segments. This algorithm uses atlas and is limited to 80

(originally, 30) predefined bundles but can be extended to work with tracts

outside of the predefined set. Another example of bundle extraction algo-

rithm is BundleSeg [48], which uses the minimum average direct-flip (MDF)

and fast streamline search (FSS) to automatically segment pre-defined bun-

dles, while keeping a low computation time.

A drawback of these atlas-based tract segmentation methods is their lack of

flexibility when the tract of interest is absent from the atlas, or when the tract

has been obtained from patient-specific regions of interest.

The last type of approach is neither dependent on a whole brain tractog-

raphy, supplementary biological information, or on predefined tracts to filter

out stray streamline from specific tracts. There are several ways to achieve

this result, the base heuristic is to apply a density threshold on the stream-

line density and to remove streamlines passing through voxels with a low

density. Other methods use more advanced tools and algorithms, such as the

MDF [65], which computes a distance between streamlines among the same
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bundle to detect outlier streamlines. Quickbundles [65] and the cluster con-

fidence index (CCI) [64] are both based on the MDF. QuickBundles performs

streamline clustering within a tract by representing the tract using one or

multiple centroid streamlines. To utilize the MDF which requires streamlines

to have the same number of steps, QuickBundles uses an internal resampling

process. The fiber to bundle coherence (FBC) algorithm uses kernel density

estimation in the non-flat 5D domain [72]. Outlier streamlines can then be re-

moved by applying a threshold on the relative FBC (RFBC), representing the

minimum of the moving average LFBC along a streamline. Another example

is BundleCleaner, which utilizes an unsupervised multi-step framework to

filter, denoise, and subsample bundles using both point cloud and streamline-

based methods [73].

Similarly to the authors of the previously mentioned articles, we believe

that the majority of spurious streamlines can be removed using algorithmic

criteria, simplifying the process of exclusion zone selection and reducing the

need for exhaustive trial-and-error testing for each tract. To achieve this, we

have developed tools to efficiently compute the mean tract trajectory, which

can be used to clean up tracts and study the microstructure of linear fascicles

along their pathways. Our method works independently of the orientation

of the tract and does not require biological priors or bundle templates. The

input streamlines can be either obtained with a limited number of inclusion

regions or with automated tract extraction means, such as WMQL [37]. Our

method was compared to four other filtering implementations. The resulting

filtered tracts no longer display spurious streamlines while preserving the

tract’s original shape.

2.2 Theory

Defining general rules will facilitate the generation of cleaner tracts, elim-

inating the need for an extensive search of exclusion zones or reliance on

biological priors, which requires expert knowledge. The proposed method-

ology contains two main concepts: the filtering process and the use of its

byproducts to conduct along-tract analysis.

2.2.1 Filtering of spurious streamlines

We considered two types of spurious streamlines in a tract  : oversteps and
missteps (Fig. 2.2). The number of spurious streamlines for each type can be

reduced by removing streamlines that do not respect either of the following

criteria.
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A B

Figure 2.2: Schematic representation (left) and tractography example (right) of the

two types of spurious streamlines on a corticospinal tract. A Oversteps,

which present a coherent pathway but an incorrect end point and BMis-

steps, which have the correct destination but deviate along their path-

way.

Oversteps depicted in Fig. 2.2A, refer to inaccuracies in streamline end-

points. This is often caused by streamlines reaching the intended end ROI

then branching off and going past the ROI. Another cause would be short

streamlines with scattered orientation but within the inclusion zones. These

inaccuracies can be detected based on the overall streamline orientation. To

achieve this, the endpoints of each streamline 𝑖 are first extracted and catego-
rized as start (𝐱𝑠𝑡𝑎𝑟𝑡 ) and end points (𝐱𝑒𝑛𝑑) based on their average streamline

direction (Fig. 2.3A,B).

u𝑖 = 𝐱𝑖,𝑒𝑛𝑑 − 𝐱𝑖,𝑠𝑡𝑎𝑟𝑡 .

The orientations of the streamlines, denoted as u𝑖, are then transformed

into polar coordinates u𝑖 = (𝑥, 𝑦, 𝑧) → u𝑖 = (𝜃, 𝜙) centered on the average

orientation of the tract (Fig. 2.3C-D). Subsequently, the kernel density 𝑑̂ℎ(u)
is estimated for all streamline orientations.

𝑑̂ℎ(u) =
1
𝑙

𝑙
∑
𝑖=1

𝐾ℎ (u − u𝑖) ,

where 𝑙 is the number of streamlines in the tract and ℎ the user-defined

bandwidth of the symmetric bivariate Gaussian kernel 𝐾ℎ(𝐱)

𝐾ℎ(𝐱) =
1

2𝜋ℎ2
𝑒−

1
2ℎ2 𝐱

𝑇 𝐱. (2.1)

Streamlines  with an insufficient number of neighbors (i.e., whose den-

sity is below the threshold of an isolated point) are then removed from the

set  (Fig. 2.3D).

Criterion: 𝑖 ∉  if 𝑑̂ℎ(u𝑖) ≤
𝑛

2𝜋ℎ2
, (2.2)
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where 𝑛 is the approximate number of neighboring streamlines necessary

to be classified as non-isolated and 1/2𝜋ℎ2 themaximum amplitude of a single

peak.

A B C D

Figure 2.3: Filtering process to remove streamlines with isolated endpoints. A Ex-

traction of streamline endpoints. B Classification of starts and ends

based on mean streamline orientation. C Representation of the orienta-

tion density of the streamlines. D Kernel density estimate and removal

of streamline with low orientation density (red crosses).

Missteps illustrated in Fig. 2.2B, represent deviations from the average stream-

line pathway. These can often be rectified through manual intervention, by

adding more inclusion zones along the intended trajectory, at the expense of

more time to select these inclusion zones. To address these stray streamlines,

an average bundle trajectory is calculated. The computation of the average

trajectory proceeds iteratively: planes  are positioned at the midpoint𝐦 be-

tween two nodes, with the normal 𝐧̂ of the plane aligned with the direction

of these points. A new node is then added to the average trajectory at the

centroid 𝑐 of the points where the streamlines and plane intersect (Fig. 2.4A).

𝐧̂𝑝 = 𝐜𝑝+1 − 𝐜𝑝−1
𝐦𝑝 = (𝐜𝑝+1 + 𝐜𝑝−1)/2

𝐜𝑝 =
1
𝑁

𝑁
∑
𝑖
𝐱𝑝,𝑖 ∀ 𝐱𝑝,𝑖 ∈ (𝐦𝑝 , 𝐧̂𝑝) ∩ 𝑖, (2.3)

where x𝑝,𝑖 is the position of streamline 𝑖 where it intersects 𝑝 .

The outlier streamlines are then identified and removed based on their posi-

tional density 𝑑̂ℎ(x𝑝,𝑖) at each plane 𝑝 (Fig. 2.4B).
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𝑑̂ℎ(x𝑝) =
1
𝑙

𝑙
∑
𝑖=1

𝐾ℎ (x𝑝 − x𝑝,𝑖) ,

with x𝑝,𝑖 the coordinate vector of streamline 𝑖 at plane 𝑝, 𝑙 the num-

ber of streamlines and 𝐾ℎ the symmetric bivariate Gaussian kernel defined

in Eq. (2.1). Similarly to the previous criterion defined in Eq. (2.2), isolated

streamlines are then removed from the set  .

Criterion: 𝑖 ∉  if 𝑑̂ℎ(x𝑝,𝑖) ≤
𝑛

2𝜋ℎ2
,

where 𝑛 is the approximate number of neighboring streamlines necessary

to be classified as non-isolated and 1/2𝜋ℎ2 themaximum amplitude of a single

point.

A B

Figure 2.4: Visualization of the filtering process for pathway deviations. A An av-

erage bundle trajectory is iteratively computed. B At each step, outlier

streamlines (red crosses) are identified based on their position density

on the plane perpendicular to the trajectory.

In both of these criteria, kernel density estimators are used instead of

a single Gaussian fit to allow for non-linear tract geometries with multiple

pathways or end points. Streamlines away from the average trajectory are

thus kept in the tract if they have a sufficient number of neighboring stream-

lines.

2.2.2 Along-tract analysis

The mean pathway and perpendicular planes previously computed for the

streamline filtering can be leveraged to segment the tract into subsections

(Fig. 2.7A) to provide along-tract analyses ofmicrostructuralmetrics (Fig. 2.7B).

To subdivide the volume of the tract into segments, a voxel mask  is

defined using either a binary mask of the voxels crossed by streamlines (roi)
or a weighted mask of the streamline density per voxel (tsl).
Volume segments𝑝 of the average streamline pathway are delimited by two
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consecutive planes 𝑝. For each segment, all the voxels 𝐯 in the mask  that

are on the same side 𝑆 as the midpoint between two adjacent planes 𝐦 are

considered to belong to that section. For each plane p in a segment,

𝑆(𝐯, 𝑝) =
𝐧̂𝑝 ⋅ (𝐜𝑝 − 𝐯)
|𝐧̂𝑝 ⋅ (𝐜𝑝 − 𝐯)|

, with 𝑆(𝐯, 𝑝) ∶ ℝ → {+1, −1}

where 𝐜𝑝 is the centroid defined in Eq. (2.3), i.e., the intersection of the

plane 𝑝 and the average pathway. Next,

∀ 𝐯 ∈ , if

{
𝑆(𝐯, 𝑝) = 𝑆(𝐦, 𝑝)
𝑆(𝐯, 𝑝 + 1) = 𝑆(𝐦, 𝑝 + 1) then 𝐯 ∈ 𝑝 .

This creates a new set of masks𝑝 from a single mask (see Fig. 2.5). The

means and deviations over the new subregions can then be appended and

plotted to provide the evolution of a microstructural metric along a tract.

Figure 2.5: Examples of tracts segmented into subsections along their pathway.

From left to right: uncinate fasciculus, cingulum, fornix and corti-

cospinal tract.

The implemented code for the algorithms presented in this section is

open-source and available at [74].

2.3 Materials & Methods

2.3.1 Data acquisition and pre-processing

The filtering algorithm was tested on tracts obtained from multi-shell dMRI

data acquired with the following parameters: TR = 4842ms, TE = 77 ms, 2 mm

isotropic voxels, in-plane FOV: 220 × 220 mm
2
, Δ = 35.7 ms, 𝛿 = 22.9 ms, 64

gradients at b = 1000, 32 at b = 2000, 3000, 5000 s/mm
2
, and 7 interspersed b0

images.

Preprocessing of the diffusion data included brain extraction [75], thermal

denoising [55], Eddy-current distortion and head-motion correction [57].
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2.3.2 Streamline generation

Streamlines were generated using two different methods to verify the effec-

tiveness of the proposed filtering algorithm on tracts obtained via different

approaches.

Method 1: using a limited number of inclusion ROIs. Since the objective

was to remove the need for an extensive list of inclusion and exclusion ROIs,

a maximum of three inclusion regions were used for each tract, with no ex-

clusion regions.

Method 2: using an atlas-based segmentation and anatomical definitions.

For this purpose, the white matter query language (WMQL) [37] was used.

The tracts created could present a wider variety of streamlines within a sin-

gle bundle compared to the first method, with short and long fibers as well as

multiple pathways or end points.

In both cases, the local modeling was estimated with MSMT-CSD [26] to

make use of the multi-shell data and the probabilistic tractography algorithm

was iFOD2 [32]. The tractography was carried out with a maximum angle of

15°, step size of 1 mm and cutoff of 0.1.

2.3.3 Streamline filtering

The streamline filter generated with our method was compared with filtering

techniques employing density thresholding, RFBC [72], CCI [64] and Bundle-

Cleaner [73]. The filtering algorithms were tested on three tracts of varying

morphology and streamline density: the arcuate fasciculus (AF), the uncinate

fasciculus (UF) and the middle posterior section of the corpus callosum (CC).

To compare the effects of different filtering algorithms on the tract, vari-

ous metrics were reported, including the number of streamlines removed, the

overlap and the average absolute difference in density per voxel. The over-

lap compared the footprint of the input 𝐴 and output 𝐵 of the filtering

process

overlap(𝐴,𝐵) =
|𝐴 ∩𝐵|

𝐴 , (2.4)

where𝐴,𝐵
are binary mask of the voxels containing tracts 𝐴 and 𝐵.

The difference in density relies on the total length of streamline segments per

voxel 𝑙𝑣, normalized by the total length of the streamlines in the tract
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𝛿(𝐴, 𝐵) = ∑
𝑣
abs(

𝑙𝐴𝑣
∑𝑣 𝑙𝐴𝑣

−
𝑙𝐵𝑣

∑𝑣 𝑙𝐵𝑣 )
.

2.3.4 Along-tract analysis

To illustrate the along-tract analysis, the fractional anisotropy (FA) of a bundle

of the corpus callosumwas estimated with a single-fixel (DTI [76]) and multi-

fixel model (DIAMOND [20]) with UNRAVEL [77] to visualize the impact of

crossing fibers on metric estimation. Both estimations were done using the

tsl weights for the weighted mean per subregion𝑝 .

The segmentation into subsections presented in the methodology was

compared to the segmentation performed with the BUAN framework. In both

cases, the corpus callosum, corticospinal tract, and arcuate fasciculus were

each segmented into 32 segments along their pathways.

The along-tract profiles of the 𝐹𝐴DTI estimates for these tracts were compared

to the profiles obtained with AFQ. The profiles were sampled at 32 intervals.

Conventionally, AFQ uses weights based on the distance to an average cen-

troid streamline to determine the contribution of each streamline to the pro-

file estimation. This weighting was disabled to enable a more direct compar-

ison between the two methods.

To further examine the usefulness of along-tract analysis in regions of

crossing fibers, the intersection of the corpus callosum with the frontal aslant

tract (FAT) was also investigated with the tract-specific FA obtained with DI-

AMOND.

2.4 Results

2.4.1 Streamline filtering

The results of the comparison of the filteringmethods are displayed in Fig. 2.6.

The arcuate fasciculus (AF) shown in Fig. 2.6A had a high number of stream-

lines and presented a complex shape with multiple end regions. The spurious

streamlines were removed in all methods. However, the computation time of

RFBC and BundleCleaner greatly increased with the number of streamlines.

Furthermore, RFBC resulted in the loss of most of the AF’s shape. The pro-

posed method removed spurious streamlines while preserving more of the

shape of the AF compared to other techniques.

The uncinate fasciculus (UF) displayed in Fig. 2.6B had a lownumber of stream-

lines and presented spurious streamlines at the top, which all methods suc-
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cessfully eliminated. However, density thresholding and CCI removed many

coherent streamlines due to the low density of the tract.

Regarding the results for the corpus callosum bundle shown in Fig. 2.6C, all

methods yielded similar outcomes, with varying degrees of streamline re-

moval. The proposed method did not eliminate all spurious streamlines in

this case.

Figure 2.6: Filtering of tracts of the A arcuate fasciculus, B uncinate fasciculus and

C the middle posterior bundle of the corpus callosum using five filtering

methods: the proposed method, density thresholding, RFBC, CCI and

BundleCleaner. All results were obtained with the default parameters,

except for the corpus callosum with BundleCleaner which provided no

results. The execution time, number of filtered streamlines, overlap and

absolute difference in density are reported below each filtered tract.

Regarding the overlap defined in Eq. (2.4) between the tracts before and

after filtering, the proposed algorithm produced tracts with greater overlap

compared to the other methods. Additionally, the proposed method exhibited

a lower absolute density difference between the two tracts, except for the UF

where RFBC displayed in a lower difference. BundleCleaner had the highest

absolute density difference across all three tracts.
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2.4.2 Along-tract analysis

The along-tract analysis on Fig. 2.7 highlighted the benefit of multi-fixel anal-

ysis in comparison to single-fixel models, such as DTI. With FADTI, a decrease

in values was observed at the beginning and end of the tract, due to the pres-

ence of crossing fibers in the left and right hemispheres. Conversely, in the

middle of the tract where a single fiber population exists, the results aligned

more closely with the values obtained through FADMD,ang.

Figure 2.7: A Streamlines passing through the anterior midbody of the corpus cal-

losum divided into twelve subregions along its pathway. B Evolution of

the FA along the pathway estimated with DTI (orange) and DIAMOND

(blue) with UNRAVEL.

The subdivision of white matter bundles into segments using the pro-

posed method was similar to the subdivision obtained with BUAN. Several

differences were noted: the extremities of the corpus callosum bundle were

more disorganized with the proposed method (Fig. 2.8A). The subdivisions of

the corticospinal tract were similar, but BUAN displayed larger regions for the

start and end portions (Fig. 2.8B). In the case of the AF, the proposed method

also resulted in a more disorganized segmentation. However, the BUAN seg-

mentation incorrectly attributed the same labels to the start and end regions

due to the AF’s arched shape (Fig. 2.8C).

The along-tract profiles derived from the proposed method were similar to

those obtained using AFQ, except for the AF (Fig. 2.8C), where the proposed

method showed an increased noise in its estimation. Overall, the profiles gen-

eratedwithAFQwere smoother and displayed lower values at the extremities.

Examining the intersection of the CC with the FAT in Fig. 2.9A and their

respective microstructure metrics in Fig. 2.9B, revealed not only diverse mi-

crostructure variations along their trajectories but also distinct estimated FA

values in the region of intersection. In this crossing region, the FA was esti-

mated to be around 0.85 and 0.82 for the FAT and CC, respectively.
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Figure 2.8: Comparison of the subdivision of the A anterior midbody of the corpus

callosum, B corticospinal tract and C arcuate fasciculus into 32 sections

with the proposed method and BUAN. The tract profiles of the 𝐹𝐴DTI
along each tract is displayed with the proposed along-tract analysis and

AFQ.

Figure 2.9: A Representation of the crossing between the corpus callosum (orange)

and frontal aslant tract (blue). B Evolution of the tract-specific fractional

anisotropy for each tract.
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2.5 Discussion

2.5.1 A fast and conservative alternative

The proposed algorithm demonstrated a fast computation time, second only

to the density thresholding heuristic. While density thresholding presents

a higher computation speed, thresholding the streamlines passing through

voxels with low density indiscriminately removed streamlines irrespective of

the average fiber dispersion in that area. This caused a loss of U-fibers con-

nections and changed the overall shape of the tract by removing small sub-

bundles of shorter end points along the tract. Filtering methods should take

into account the variation in density along certain portions of the pathway

to not remove entire connections within the tract. Density thresholding also

removed the majority of streamlines in tracts of low density, which can cause

loss of the overall shape of the tract.

The proposed method preserved the original shape of the tracts, demonstrat-

ing high overlap between the tracts before and after filtering. Additionally,

it had minimal impact on the distribution of streamline density, which are

desirable characteristics for a conservative algorithm.

2.5.2 Along-tract analysis

The tract profiles generated using the proposed method were consistent with

those obtained through AFQ, except for the lower start and end values in

the AFQ estimates and a smoother profile with AFQ. The lower values at the

extremities in AFQ are due to its resampling approach, which considers the

first and last points of each streamline rather than the first and last sections.

These points are closer to the gray matter, and therefore, exhibit lower FA

values. The smoother appearance of the AFQ profile could also result from

resampling into smaller sections, as each streamline is resampled and shorter

streamlines contribute across the entire length of the tract profile. As a result,

AFQ is more accurate when all streamlines traverse the entire tract, compared

to tracts with short streamlines and multiple end points.

The main difference appeared in the estimation of the AF profile, which was

irregular when using the proposed method. This irregularity is due to a lack

of robustness in estimating the average pathway as the number of subdivi-

sions increases.

Nonetheless, the byproducts of the filtering process can be used for along-

tract analysis. Moreover, contrarily to TRACULA and other methods where

only DTI metrics are available or metrics are limited to single-fixel models,

the proposed method allows for fixel-specific analyses using the output from

a wide range of multi-fixel models.
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2.5.3 Limitations & future perspectives

The algorithm did not remove all streamlines that could be considered spuri-

ous in certain cases, such as in the corpus callosum example shown in Fig. 2.6.

In this particular case, it was caused by several streamlines presenting a sim-

ilar pathway, which prevented them from being classified as isolated by the

exclusion criteria. While these streamlines could be removed by manually in-

creasing the parameter that adjusts the required number of neighbors, adapt-

ing the default behavior of this parameter to automatically adjust based on the

number of streamlines in the tract would reduce the amount of fine-tuning

required.

The proposed tract segmentation into sub-sections struggled with tract

displaying highly non-linear profiles as branching into several pathways is

incorrectly estimated by a single average position. To solve this issue, other

options to represent the mean trajectory could be investigated such as Reeb

graphs, which would also allow branching in themean pathway [78], or using

multiple centroid streamline such as in QuickBundles. Another option would

be to use the streamline with the highest average kernel density estimate as

the centroid instead of the average position on the plane.

This could also improve the robustness of the method when the number of

subsections increases, as currently increasing the number of subdivisionsmakes

the estimation of the average pathway unstable and greatly increases the com-

putation time.

2.6 Conclusion

The proposed method demonstrated a conservative filtering with a low com-

putation time, making it well-suited for tracts with a high number of stream-

lines and tracts of low density. The absence of a template enables the explo-

ration of lesser-known tracts or the extraction of tracts of interest based on

regions obtained with other modalities, such as fMRI-activated regions. This

approach holds promise for patients with abnormal brain structures or a high

number of lesions, enabling tailored and patient-specific analyses of neural

pathways, which is a step towards personalized medicine. Certain areas re-

quire further improvement, such as refining the removal of spurious stream-

lines within non-linear fascicles. Nonetheless, the algorithm should prove to

be valuable for individuals seeking to filter spurious streamlines while pre-

serving the tract morphology and to perform along-tract analyses with multi-

fixel models.
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Unraveling multi-fixel microstructure with
tractography and angular weighting

Extended version of an article published as:
Delinte N, Dricot L, Macq B, Gosse C, Van Reybroeck M and Rensonnet G

(2023) Unraveling multi-fixel microstructure with tractography and angular

weighting. Front. Neurosci. 17:1199568. [77]
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3.1 Introduction

In the field of brain research, diffusion MRI (dMRI) leveraging multi-shell se-

quences has emerged as an essential tool through its ability to detect changes

in the microscopic and macroscopic structure of white matter which other

MRI modalities are unable to capture.

At the microscopic scale, within each imaging voxel, adequate dMRImod-

eling estimates the orientation of axons or fascicles of axons [25, 79], and finer

morphological properties, referred to as microstructure, such as the axon di-

ameter, axonal density or diffusivity [80, 40]. The majority of white matter

(WM) voxels contain complex crossing configurations of two or three fiber

populations per voxel [81], which will be referred to in this work as fix-
els, as proposed in [82]. At the macroscopic scale, tractography algorithms

piece together the orientational information collected at each voxel to gener-

ate streamlines representing the course of a bundle of axons across multiple

WM voxels. Tractography is a visualization tool of great interest in clinical

practice, but further processing is required for quantitative analyses.

Assigningmicrostructural properties tomacroscopic streamlines in a con-

sistent way remains a challenging task [83], yet it is of great interest for

the study of brain structure and function, in healthy and pathological con-

ditions [84]. It is particularly useful in population studies where the shape

of WM tracts may vary significantly between patients, leading simple voxel-

based comparisons to fail [85, 86]. By far the most commonmethod to charac-

terizeWM tracts to date has been to rely on scalar maps ofWM properties de-

rived from single-fixel models such as in Diffusion Tensor Imaging (DTI) [76].

A WM tract is characterized by averaging the microstructural properties of

all voxels containing streamlines of the tract, with possible refinements such

as weighting by a tract probability atlas and distance from an average stream-

line [85]. The main limitation of this approach is its inability to interpret the

microstructure in voxels where multiple fiber populations intersect [87], al-

though such voxels are abundant at clinical imaging resolution [81, 88]. Con-

sequently, streamlines belonging to different macroscopic tracts but passing

through the same voxels are inevitably assigned the same microstructural

metrics. Multi-fixel models, such as [6, 20, 21, 89], address the limitations

of single-fixel models in areas of crossing fibers, but are more difficult to in-

terpret and combine with macroscopic information, because of one-to-zero,

one-to-one and one-to-many correspondence issues between local fixels and

macroscopic tracts [87, 90, 91]. We identify two classes of approaches to over-

come these limitations: i) microstructure-informed tractography and ii) com-

bining tractography information with the output of multi-fixel models.
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Microstructure-informed tractography has received a lot of attention in

the literature. Frameworks such as MicroTrack [92], SIFT [33], SIFT2 [34],

COMMIT [35], COMMIT2 [36], COMMIT-𝑇2 [93], COMMIT_tree [94] and

MesoFT [95] use a generative signal model for each streamline, assume con-

stant microstructure along each streamline and solve a global optimization

over the whole WM to simultaneously filter streamlines and estimate their

microstructural properties. These methods may be limited in the range of

microstructural parameters which can be assigned to WM tracts: SIFT and

SIFT2 are mainly designed to estimate fiber volume and density while COM-

MIT methods estimate the diameter of each streamline and may not enable

the estimation of more phenomenological properties such as diffusivities. Ax-

Tract [96] relaxes the hypothesis of constant microstructure along stream-

lines but requires a multi-fixel model with an estimate of the axon diameter

for each fixel, which is challenging with current acquisition protocols. Re-

cently, an extension of the COMMIT framework was proposed to estimate

the myelin content of crossing streamlines separately from a scalar map of

voxel-wise myelin content [97].

Fewer approaches have been proposed to combinemulti-fixelmodels with

tractography. Connectivity-based fixel enhancement (CFE) [82] and a fixel-

based analysis (FBA) framework [90, 86] were proposed for group compar-

isons of fixel-specific measures across the white matter, wherein fixel-specific

metrics are smoothed only with the fixels sharing common streamlines, with

a focus on axon density. However, a challenging step of this method is the

creation of a group-averaged template of fiber Orientation Distribution Func-

tions (fODFs). This may introduce distortions, artifacts or excessive smooth-

ingwhen the brainmorphology presents abnormalities. Furthermore, a stream-

line segment in a voxel is only assigned themetrics of the fixel with the closest

orientation, which does not allowmultiple local fixels to contribute to a given

streamline. This “closest-fixel-only” strategy was also used in [16, 21, 91]

when analyzing the microstructural properties of macrostructural WM tracts

using a multi-fixel model.

This work focuses on the latter class of approaches, i.e., the combination

of multi-fixel models and tractography, and introduces a framework named

UNRAVEL. The only inputs required for our framework are any choice of

multi-fixel microstructural model and a set of streamlines specific to a macro-

scopic tract of interest, which can be generated by any tractography algo-

rithm and isolated with any method [37]. The streamlines can be generated

independently and do not need to match the orientations of the fixels in the

microstructural model. We propose a lightweight framework relating stream-
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line segments to local fixels, which includes the closest-fixel-only and a pro-

posed angular weighting strategy among various options. Our framework

also allows microstructural properties to vary along the course of an indi-

vidual streamline. We provide theoretical interpretations at the tract and at

the streamline segment level, which enables UNRAVEL to estimate the mi-

crostructure at the streamline level as well as mean microstructural values

for a whole tract. We validate the method on a synthetic phantom, on a scan-

rescan experiment on a healthy adult, as well as on a small population of

children with dyslexia and control children.

3.2 Theory

The UNRAVEL framework requires two inputs for each subject, schematically

illustrated in Fig. 3.1. First, an estimation of a𝐾 -fixel model in every voxel 𝑣 of
the WM, in which every fixel 𝑘 is characterized by a principal orientation 𝐮̂𝜇𝑣𝑘
and fixel-specific microstructural metrics 𝑀𝜇

𝑣𝑘 , 𝑘 = 1,… , 𝐾 , where typically

𝐾 = 2 or 3. Second, a macroscopic tract  , defined as a set of streamlines,

based on anatomical or functional relevance. Each streamline  is composed

of small, straight segments 𝑠, with a length equal to the step size parameter

in the tractography.

T

L

s
K=2A) B) 

Viewed by   DTI, DMD, MF

Figure 3.1: The proposed UNRAVEL framework requires two independent
inputs: a multi-fixel microstructural model estimated in the
white matter and the streamlines of a given macroscopic tract
of interest. A 2D slice of a volume with up to 𝐾 fixels in each voxel

obtained with a multi-fixel model (such as DIAMOND [DMD] and Mi-

crostructure Fingerprinting [MF]), with each fixel possessing a main ori-

entation (shown as colored sticks) and different microstructural proper-

ties. B Illustration of a macroscopic tract  , composed of streamlines 
made of segments 𝑠. In this illustration, tract  was isolated from a set

of whole-brain tractography streamlines.
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3.2.1 The UNRAVEL framework

The main concept behind UNRAVEL is to treat each streamline segment 𝑠 of
a macroscopic tract  individually and assign each segment microstructural

properties in each voxel 𝑣 based on the fixels in that voxel. The key quantity

to achieve this is defined below.

Relative contribution of a fixel to a streamline segment

The relative contribution of fixel 𝑘 to a streamline segment 𝑠 in voxel 𝑣 is

denoted 𝛼𝑣𝑠𝑘 and must satisfy

𝛼𝑣𝑠𝑘 ∈ [0, 1] (3.1)

𝐾
∑
𝑘=1

𝛼𝑣𝑠𝑘 = 1 ∀ 𝑣, 𝑠.

Streamline segments crossing voxels boundaries are divided into smaller sub-

segments, each of which is enclosed within a single voxel and is then pro-

cessed individually. Four definitions are considered below, referred to as rela-

tive volume weighting, closest-fixel-only and angular weighting. In contrast

to the relative volume weighting approach, which is independent of the angle

between the segment 𝑠 and the fixel 𝑘, closest-fixel-only and angular weight-
ing are determined by the angular difference between the two.

Relative volume weighting (vol) This method attributes a relative con-

tribution using the relative volume fraction of each fixel in a voxel 𝑣

𝛼𝑣𝑠𝑘 =
𝑓𝑣𝑘

∑𝑘 𝑓𝑣𝑘
, (3.2)

where 𝑓𝑣𝑘 is the volume fraction of fixel 𝑘 estimated by the multi-fixel model.

The resulting relative contribution is not dependent on 𝑠. In the absence of

an isotropic compartment, this equation can be simplified to 𝛼𝑣𝑠𝑘 = 𝑓𝑣𝑘 as the
volume fraction of each fixel sum to one, as in [98].

Closest-fixel-only (cfo) A segment receives a contribution from a single

fixel in the voxel, based on the angular distance. The fixel 𝑘 with orientation

𝐮̂𝜇𝑣𝑘 closest to the orientation 𝐮̂𝑣𝑠 of a streamline segment 𝑠 in voxel 𝑣 gives
its properties to segment 𝑠 while the other fixels do not contribute. This is

the most commonly used strategy in methods combining microstructure and
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tractography such as MicroTrack [92], CFE [82] and Magic DIAMOND [91].

Mathematically, for 𝑘 = 1,… , 𝐾,

𝛼𝑣𝑠𝑘 =

{
1 if 𝑘 = argmin

𝑘′
∠𝐮̂𝑣𝑠 , 𝐮̂

𝜇
𝑣𝑘′

0 elsewhere,

(3.3)

where ∠𝐚, 𝐛 denotes the angle between vectors 𝐚 and 𝐛.

Angular weighting (ang) A relative contribution 𝛼𝑣𝑠𝑘 is assigned to all

fixels 𝑘 in a voxel 𝑣 based on the relative angle difference between the fixels

and the orientation of the streamline segment 𝑠. The closer a fiber population
orientation is to the orientation of the segment, the closer 𝛼𝑣𝑠𝑘 is to 1 and

the more this fixel contributes to the microstructural properties assigned to

𝑠. Mathematically, for 𝑘 = 1,… , 𝐾,

𝛼𝑣𝑠𝑘 =

{ ∑𝐾
𝑘′=1 ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′−∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘

(𝐾−1)⋅∑𝐾
𝑘′=1 ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′

for 𝐾 > 1,

1 for 𝐾 = 1.
(3.4)

This definition is expected to be useful in tracts  in which axons ex-

hibit microscopic dispersion [99, 100] where multiple fixels may be required

to explain the signal. It also captures the stochastic nature of the streamline

segment orientation in probabilistic tractography.

While Eq. (3.4) has the expected behavior when K=2, increasing the number of

fixels decreases the weight attributed to a perfectly aligned fixel. This equa-

tion can be re-formulated avoid reducing the weight of a perfectly aligned

fixel when K>2,

𝛼𝑣𝑠𝑘 =

{ ∏𝐾
𝑘′=1,𝑘′≠𝑘 ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′

∑𝐾
𝑘′′=1 ∏

𝐾
𝑘′=1,𝑘′≠𝑘′′ ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′

for 𝐾 > 1,

1 for 𝐾 = 1.
(3.5)

Relative angularweighting (raw) Decreases theweights of fixels orthog-

onal to the streamline segment 𝑠

𝜙 = min(90,
𝐾
∑
𝑘′=1

∠𝐮̂𝑣𝑠 , 𝐮̂
𝜇
𝑣𝑘′)

𝛼𝑣𝑠𝑘 =

{
𝜙−∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘

𝜙⋅𝐾−∑𝐾
𝑘′=1 ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′

for 𝐾 > 1,

1 for 𝐾 = 1.
(3.6)
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This definition is expected to be useful in tracts  in which axons exhibit

microscopic dispersion [99, 100] where multiple fixels may be required to ex-

plain the signal. It also captures the stochastic nature of the streamline seg-

ment orientation in probabilistic tractography. Following the changes made

in Eq. (3.5), Eq. (3.6) can be rewritten as

𝛼𝑣𝑠𝑘 =

{ ∏𝐾
𝑘′=1,𝑘′≠𝑘 ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′

∑𝐾
𝑘′′ ∏

𝐾
𝑘′=1,𝑘′≠𝑘′′ ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′

⋅ 90−∠𝐮̂𝑣𝑠 ,𝐮̂
𝜇
𝑣𝑘

90⋅𝐾−∑𝐾
𝑘′=1 ∠𝐮̂𝑣𝑠 ,𝐮̂

𝜇
𝑣𝑘′

for 𝐾 > 1,

1 for 𝐾 = 1.

Figure 3.2 graphically compares the above definitions of 𝛼𝑣𝑠𝑘 in a casewith
𝐾 = 2 fixels in a voxel. With these definitions, streamline- and tract-specific

maps and metrics can now be defined.

Figure 3.2: Angular weighting attributes a relative weight to all fixels based
on the angle difference. Graphical representation of the orientations

𝐮̂𝜇1 and 𝐮̂𝜇2 of two fixels and a segment 𝑠 of a streamline  (orange) in a

voxel 𝑣 and the relative contribution 𝛼𝑣𝑠𝑘 of fixel 1 (𝑘 = 1, red) and fixel

2 (𝑘 = 2, blue) with A relative volume weighting, B closest-fixel-only,

C angular weighting and D relative angular weighting strategies as a

function of the orientation 𝐮̂𝑠 of the streamline segment in the voxel.

Each weighting strategy is also represented with an angle difference of

150° (left) and 270° (right).

Streamline microstructure

For all segments 𝑠 of a given streamline, the segment-specific microstructural

metric 𝑀𝑣𝑠 is defined in voxel 𝑣 as

𝑀𝑣𝑠 =
𝐾
∑
𝑘=1

𝛼𝑣𝑠𝑘𝑀
𝜇
𝑣𝑘 . (3.7)

This value varies with 𝑠, which allows a streamline to have non-constant mi-

crostructure along its course.
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Fixel weight maps

We first define the segment-specific fixel weight 𝑤𝑣𝑠𝑘 as

𝑤𝑣𝑠𝑘 = 𝛼𝑣𝑠𝑘𝑙𝑣𝑠 ,

where 𝑙𝑣𝑠 is the length of segment 𝑠, restricted to voxel 𝑣 if segment 𝑠 spans
multiple voxels. For each fixel 𝑘, a fixel weight map 𝑤

𝑣𝑘 of the streamline

segments 𝑠 in tract  is then defined as

𝑤
𝑣𝑘 = ∑

𝑠
𝑤𝑣𝑠𝑘 = ∑

𝑠
𝛼𝑣𝑠𝑘𝑙𝑣𝑠 . (3.8)

Such a map shows in each voxel 𝑣 the importance of fixel 𝑘 in assigning mi-

crostructural properties to the segments of tract  , with higher weight asso-

ciated to longer and more numerous streamline segments in that voxel and

to higher relative contribution 𝛼𝑣𝑠𝑘 of fixel 𝑘. Note that this map does not
exhibit spatial smoothness in general because the 𝑘-th fixel of one voxel may

not correspond to the same macroscopic tract  as the 𝑘-th fixel in neighbor-

ing voxels.

Finally, the summation of Eq. (3.8) over 𝑘 gives the map of total segment

lengths 𝑤
𝑣 in each voxel (using Eq. (3.1) for the last equality)

𝑤
𝑣 =

𝐾
∑
𝑘=1

𝑤
𝑣𝑘 =

𝐾
∑
𝑘=1

∑
𝑠
𝛼𝑣𝑠𝑘𝑙𝑣𝑠 = ∑

𝑠
𝑙𝑣𝑠 , (3.9)

which does not depend on the fixels’ microstructural properties and is en-

tirely determined by the tractography. This map will generally exhibit spatial

smoothness and can be interpreted as the probability of the presence of tract

 .

Microstructure maps

Summing the fixel-specific microstructural metrics 𝑀𝜇
𝑣𝑘 provided as input to

our method weighted by the above-defined fixel weight maps produces the

following map

𝑀
𝑣 =

∑𝐾
𝑘=1𝑤

𝑣𝑘𝑀
𝜇
𝑣𝑘

∑𝐾
𝑘=1𝑤

𝑣𝑘
, (3.10)

which gives an average microstructural metric in each voxel 𝑣 represent-
ing all the streamlines of tract  . This map exhibits more spatial smoothness

and facilitates visualization of tract microstructure. The confidence level of

its values can be guided by the segment lengthsmap defined in Eq. (3.9) above.
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Mean tract microstructural metric

An overall scalar summary 𝑀̄
of a specific microstructural metric 𝑀𝜇

for

tract  can be defined using Eq. (3.10) and a weighted map 𝛾 
𝑣 , specifying the

respective weights of each voxels for the mean value

𝑀̄ =
∑𝑣 𝛾 

𝑣 𝑀
𝑣

∑𝑣 𝛾 
𝑣

. (3.11)

Two definitions of weighted map 𝛾 
𝑣 are considered below, referred to as

total segment length and region of interest weighting.

Total segment length weighting (tsl) A first weighted map can be de-

fined using the total segment length 𝑤
𝑣 defined in Eq. (3.9), where voxels

with a high fixel weight contribute more to the final metric.

𝛾 
𝑣 = 𝑤

𝑣 . (3.12)

Region of interest weighting (roi) Another weighted map can be defined

by attributing equal weights to all voxels 𝑣 contained in the tract.

𝛾 
𝑣 =

{
1 ∀ 𝑣 ∈ 
0 elsewhere. (3.13)

3.2.2 Interpretation at the segment level

Equation (3.10) can be rewritten as (see details in Appendix B)

𝑀
𝑣 =

∑𝐾
𝑘=1𝑤

𝑣𝑘𝑀
𝜇
𝑣𝑘

∑𝐾
𝑘=1𝑤

𝑣𝑘

=
∑𝑠 𝑙𝑣𝑠𝑀𝑣𝑠

∑𝑠 𝑙𝑣𝑠
,

(3.14)

which states that the tract-specific map in a voxel 𝑣 results from the contribu-

tions of all streamline segments in a specific voxel. Each segment contributes

its segment-specific microstructural metric𝑀
𝑣𝑠 defined in Eq. (3.7), weighted

by its intra-voxel length 𝑙𝑣𝑠 . The quantity is normalized by the total segment

length in that voxel.

Similarly, Eq. (3.11) using Eq. (3.12) can be rewritten as (see Appendix B)

𝑀̄ =
∑𝑣 𝛾 

𝑣 𝑀
𝑣

∑𝑣 𝛾 
𝑣

=
∑𝑣 ∑𝑠 𝑙𝑣𝑠𝑀𝑣𝑠

∑𝑣 ∑𝑠 𝑙𝑣𝑠
,
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where the interpretation is similar to the tract-specific microstructure map

𝑀
𝑣 above, except for the contributions which are from all segments over all

the voxels containing streamlines of tract  .

3.3 Materials and methods

3.3.1 Datasets

Our proposed framework and angular weighting strategy were validated us-

ing three datasets: a synthetic phantom, a scan and rescan on a healthy adult

volunteer and cohorts of dyslexic children and control children. The syn-

thetic phantom provided a comparison of the different approaches to a known

ground truth. The scan and rescan enabled an analysis of the variability and

reproducibility of the results. Lastly, the dyslexic cohort served as proof of

concept that our framework could be applied to clinical populations.

Experiment I: Synthetic phantom

A synthetic phantom based on Monte Carlo simulations of the dMRI sig-

nal [101, 102, 103] was created to compare the microstructural metrics ob-

tained to a known ground truth. The dMRI protocol used for the phantom

matched as closely as possible the protocol used in the in vivo acquisitions de-
scribed below. Axons were modeled as straight, randomly packed cylinders

with diameters drawn from a gamma distribution with mean and variance

fixed to 1 𝜇𝑚 and 0.6 𝜇𝑚 respectively [102]. The cylinder packing density

was interpreted as a fiber volume fraction (FVF). Intra-axonal diffusivity was

fixed to 2 𝜇𝑚2/𝑚𝑠 [104]. As visible in Fig. 3.4, the phantomwas a 2D slice con-

taining four tracts: two horizontal and two vertical tracts. The top and bottom

tracts had a FVF of 0.70 and 0.66, respectively, while the vertical tracts had an

increasing FVF from top to bottom. All voxels had an extracellular diffusivity

𝐷ex = 1 𝜇𝑚2/𝑚𝑠. Each vertical tract crossed both horizontal tracts over mul-

tiple voxels. Regions of isotropic diffusion representing cerebrospinal fluid

(CSF) were also included.

Experiment II: Scan & rescan

A healthy adult participant underwent two consecutive dMRI scans to study

the variability in the outputs of our method. The scans were performed on a

3T GE SIGNA Premier scanner (GE Healthcare, Chicago, IL) with the follow-

ing parameters: TR = 4842 ms, TE = 77 ms, 2 mm isotropic voxels, in-plane
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FOV: 220x220 mm
2
, Δ = 35.7 ms, 𝛿 = 22.9 ms, 64 gradients at b = 1000, 32 at b

= 2000,3000,5000 s/mm
2
, corresponding to diffusion gradient intensities up to

68.9 mT/m, and 7 interspersed b0 images. Preprocessing included thermal de-

noising [55], Gibbs ringing correction [56], eddy-current distortion andmove-

ment correction [57]. Themovement correction procedure provided variables

representing the relative movement of the patient during the scan time [105].

The total relative motion, representing the average voxel displacement across

all voxels with respect to the previous volume, for all volumes, was selected

as a summary measure 𝑋mov of the patient’s movement. A 3D T1 image (TE

= 2.96ms, TR = 2188.16ms, TI = 900ms, 156 slices, 1mm isotropic, in-plane

FOV: 256x256mm
2
) was also acquired with each scan. Registration to the

Desikan-Killiany atlas [60] was accomplished using the FreeSurfer1 function
recon-all, with an additional parcellation of the brainstem. Differences in

all tract-specific metrics were computed between the scan and the rescan in

38 major white matter pathways (see methodological details in Section 3.3.2).

Experiment III: Dyslexia study

The study consisted of 16 children with dyslexia, a reading and spelling dis-

order, and 18 healthy controls in the same age range (9.5 ± 1 years old). The

experiment was carried out in accordance with the ethical standards of the

Declaration of Helsinki and received approval by the Ethics Committee of

the University Hospital of Saint-Luc (number: B403201942022). All partici-

pants underwent a dMRI sequence with the same parameters as in Experi-

ment II above. The registration also used the FreeSurfer parcellation. Two

macroscopic WM tracts of interest were selected to compare the two popu-

lations: the right arcuate fasciculus (AF) and the right superior longitudinal

fasciculus II (SLFII). These tracts were selected for their involvement in the

language-related pathways and, potentially, dyslexia [106, 107, 108, 109]. For

each average microstructural metric𝑀 in each tract and for each of the anal-

ysis methods described below, the following regression model was estimated

𝑀 = 𝛽0 + 𝛽dys ⋅ 𝑋dys + 𝛽mov ⋅ 𝑋mov,

where 𝑋dys ∈ {0, 1} encodes the participant’s group and 𝑋mov is the aggregate

movement metric computed with FSL’s motion correction routine [105]. Esti-

mates and p-values of 𝛽dys were reported to assess the difference between the

two populations attributed to dyslexia after correcting for movement during

the acquisition.

1https://surfer.nmr.mgh.harvard.edu/
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3.3.2 Data processing and analysis

Four types of estimates for a microstructural property 𝑀 were obtained fol-

lowing the pipeline depicted in Fig. 3.3, described in more detail in the fol-

lowing paragraphs.

Microstructural diffusion models

As shown in the second row of Fig. 3.3, either a single- or a multi-fixel model

was estimated at this stage. DTI [76] was selected as the single-fixel model

while DIAMOND (DMD) [20] and Microstructure Fingerprinting (MF) [21]

served as multi-fixel models. DTI and DIAMOND provided tensor-derived

metrics such as the fractional anisotropy (FA) while MF estimated the fiber

volume fraction (FVF) of each fixel. An isotropic signal contribution was al-

lowed for the multi-fixel models.

Macroscopic tractography analysis

This stage (second row, right in Fig. 3.3) consisted in generating tractography

streamlines specific to a tract of interest  . In our experiments, tractography

of the WM was performed using a probabilistic algorithm based on the Con-

strained Spherical Deconvolution (CSD) model [25] to produce a whole-brain

tractogram [54]. However, the UNRAVEL framework does not constrain the

choice of tractography algorithm. In the phantom of Experiment I, the seeds

and target regions were placed at the start and end of each tract. In the in
vivo Experiments II and III, the seeds were placed inside of a T1-based white

matter mask with a density of 8 seeds per voxel. The other selected parame-

ters were: a step size of 1 mm, a stopping criterion of 0.35 on the generalized

anisotropy and a maximum angle of 15
◦
between streamline segments. The

WM tracts of interest were extracted from the whole brain tractography us-

ing White Matter Query Language (WMQL) [37]
2
.

2
The WMQL queries used are available on the GitHub page of our project at https://

github.com/DelinteNicolas/UNRAVEL
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Figure 3.3: Different approaches to attribute microstructural properties to
macroscopic tracts with our proposed UNRAVEL framework. The
ground truth (top row) schematically depicts crossing fascicles of axons

(not to scale). The grayscale maps in the background show the value of a

tract-specific microstructural metric 𝑀 . Either a single- or a multi-fixel

model (with 𝐾 = 2 in our example) is estimated (second row). Note that

a multi-fixel model does not guarantee a consistent separation of fixels

in regions of crossings. The outputs of the proposed method are: A Mi-

crostructure maps (Eq. (3.10)), created for each tract  using a relative

contribution defined by either vol, cfo or ang. B The maps are then av-

eraged as a single value (Eq. (3.11)) with the roi or tsl option.
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Microstructure maps and scalars

The final stages consisted in computingmaps (Fig. 3.3A) and averages (Fig. 3.3B)

of the metrics of the tracts of interest. For ease of notation, we denote the mi-

crostructure map of a tract  for a metric𝑀 from a model (either DTI, DMD

or MF) as

𝑀
MODEL,,

where ∈ {cfo, 𝑎𝑛𝑔, 𝑣𝑜𝑙} specifies the strategy used to define the relative
contribution 𝛼𝑣𝑠𝑘 of a fixel to a streamline segment, as defined in Section 3.2.1.

Similarly, the mean of the microstructure map is written as

𝑀̄
MODEL,, ,

where  ∈ {𝑡𝑠𝑙, 𝑟𝑜𝑖} specifies the tract-averaging strategy 𝛾 
𝑣 selected as

defined in Section 3.2.1.

Although all combinations of and  are compatible, four cases were se-

lected to showcase the currently available options and the variety of analysis

possible with the UNRAVEL framework, and to serve as a baseline to com-

pare our proposed angular weighting strategy (Fig. 3.3). The commonly used

ROI-based single-fixel analysis was represented by the DTI model with re-

gion of interest weighting (roi). A similar heuristic approach is developed us-

ing multi-fixel output with a relative volume and region of interest weighting

(vol,roi), where the streamline orientation and density do not have an effect

on the final estimate. In contrast, the last two approaches, corresponding to

either closest-fixel-only or angular weighting combined with total segment

length weighting (cfo/ang,tsl), are highly impacted by the tractography with

the influence of streamline orientation and density on the estimated mean

metric. The closest-fixel-only (cfo) strategy is commonly usedwhen assigning

multi-fixel microstructural properties to streamlines [82, 21, 91] and serves as

a baseline for the proposed angular weighting (ang) approach.

For all three experiments, we reported estimates of the FA obtained with

the four approaches using the FA from DTI and the FA of the diffusion ten-

sors found by DIAMOND (DMD) and named FA
DTI

, FA
DMD,𝑣𝑜𝑙 , FA


DMD,cfo and

FA
DMD,𝑎𝑛𝑔 . Metrics obtained with DTI do not specify the 𝛼𝑣𝑠𝑘 used since all

three definitions attribute all the weight to the only fixel present. The FVF

was only obtained with the last three approaches, corresponding to FVF
MF,vol,

FVF
MF,cfo and FVF

MF,ang, since this variable was only available with MF.
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3.4 Results

3.4.1 Experiment I: Synthetic phantom

Figure 3.4 reports the tract-specific FA and FVF maps found with the different

approaches as well as the means, medians, and interquartile ranges for each

tract. With the single-fascicle model, FADTI presented a noticeable decrease in

areas of crossing fibers between the horizontal and vertical tracts. The vari-

ation along all tracts was high, with FADTI ranging from 0.55 to 0.97 in tracts

1 and 2 where the ground truth value did not vary along the tract. The

mean
̄FADTI,𝑟𝑜𝑖 in all three tracts was lower than the minimum value in the

ground truth. With a multi-fixel model and relative volume weighting, the

FADMD,𝑣𝑜𝑙 values were closer to the ground truth than the traditional FADTI in

all tracts, especially in areas of crossing fascicles. The values still underesti-

mated the ground truth except in tract 3 where the median of the FADMD,𝑣𝑜𝑙
estimates exceeded the highest value in the ground truth. The closest-fixel-

only approach displayed less variation than FADTI and FADMD,𝑣𝑜𝑙 , but overesti-

mated the FADMD,cfo values. Our proposed FADMD,𝑎𝑛𝑔 values also displayed less

variation than FADTI and FADMD,𝑣𝑜𝑙 but was closer to the ground truth than

FADMD,cfo. Estimates of FVFMF,cfo and FVFMF,𝑎𝑛𝑔 were similar and presented

less variation compared to FVFMF,𝑣𝑜𝑙 , except for tract 2 where FVFMF,𝑎𝑛𝑔 ex-

hibited a larger variation. The values of the FADMD,𝑎𝑛𝑔 and FVFMF,𝑎𝑛𝑔 mi-

crostructure maps displayed in Fig. 3.4 should be interpreted with caution

along the edges of the tracts as a low number of streamline segments were

contained in those voxels.

The differences between closest-fixel-only and angular weighting were

investigated in Fig. 3.5, which shows the evolution of the segment-specific

microstructural metrics FA, from DIAMOND, and FVF, from MF, assigned

to each segment of a single streamline isolated from tract 3, as defined by

Eq. (3.7), using relative volumeweighting (Eq. (3.2)), closest-fixel-only (Eq. (3.3))

and angularweighting (Eq. (3.4)). In Fig. 3.5B, DIAMOND incorrectly detected

two different fixels in the voxels of the upper part of tract 3 whereas the

ground truth only contained one fixel. The erroneous fixel most aligned with

the streamline exhibited a FA greater than the ground truth, while the other

presented a lower FA. This led to an overestimation of the streamline-specific

FADMD,𝑐𝑓 𝑜 , whereas there was either less or no impact on FADMD,𝑎𝑛𝑔 , which

enablesmultiple fixels to contribute to a streamline segment. In Fig. 3.5C, with

the orientations used by MF, the closest-fixel-only and angular weighting

strategies yielded similar estimates of the streamline-specific FVFMF, which

gradually decreased from the lower to the upper part of the isolated stream-

line.
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Figure 3.4: The UNRAVEL framework enables more accurate estimation of
the tract-specificmicrostructure, less impacted by tract crossings.
Two horizontal tracts 1 and 2 with a high FA and FVF are crossed by

vertical tracts 3 with lower FA and FVF. Tract-specific microstructure

maps, defined by Eq. (3.10), are shown for the microstructural metrics FA

and FVF. Bottom row: the mean (circle), median (dash) and interquartile

range (boxes) of FA and FVF values found for each tract are displayed, the

average ground truth value is indicated by a continuous gray line while

the minimum and maximum values are shown by dashed gray lines.
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Figure 3.5: Angular-weighted relative fixel contribution robustly captures
varying microstructure along the course of a single streamline.
A A single streamline was isolated (in orange) and all its segments were

investigated. The local multi-fixel models were B DIAMOND (DMD)

andCMicrostructure Fingerprinting (MF), each leading to different fixel

orientations in each voxel. The DMD model incorrectly estimated two

populations in the top half of the vertical tracts. The B FA or C FVF val-

ues attributed to the streamline segments were computed from the FA

or FVF of the multiple fixels in the voxel, following Eq. (3.7). For both

B and C, the values were estimated using the relative volume weighting

approach (Eq. (3.2), in blue), closest-fixel-only approach (Eq. (3.3), in red)

and the angular weighting approach (Eq. (3.4), in green).

3.4.2 Experiment II: Scan & rescan

Bland-Altman plots for the tract-wide means
̄FADTI,𝑟𝑜𝑖 (Fig. 3.6A), ̄FADMD,𝑣𝑜𝑙,𝑟𝑜𝑖

(Fig. 3.6B),
̄FADMD,cfo,𝑡𝑠𝑙 (Fig. 3.6C) and our proposed average

̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙
(Fig. 3.6D) defined by Eq. (3.11) for each of the 38 selected tracts suggest

smaller changes between the scan and the rescan for
̄FADMD,𝑣𝑜𝑙,𝑟𝑜𝑖, ̄FADMD,cfo,𝑡𝑠𝑙

and the proposed
̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙 than for

̄FADTI,𝑟𝑜𝑖 across the 38 WM regions.

Tracts with a higher mean FA showed less variation between the two scans

across all approaches. Themean percentage change of
̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙 was closer

to zero compared to
̄FADMD,𝑣𝑜𝑙,𝑟𝑜𝑖 and ̄FADMD,cfo,𝑡𝑠𝑙 . The tract-wide means were

higher for
̄FADMD,cfo,𝑡𝑠𝑙 and ̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙 than for

̄FADMD,𝑣𝑜𝑙,𝑟𝑜𝑖, all being con-

siderably higher than the traditional
̄FADTI,𝑟𝑜𝑖.

Similarly to Experiment I, the evolution of the microstructural proper-

ties along the path of a single streamline can be obtained with in vivo tracts.
Figure 3.7 displays the relative contribution 𝛼𝑣𝑠𝑘 using angular weighting

(Eq. (3.4)) as well as the associated metrics FADMD,𝑎𝑛𝑔 and FVFMF,𝑎𝑛𝑔 for an

isolated streamline passing through the corpus callosum. The neural fibers in

the middle of the pathway, linking the left and right hemispheres, presented a
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Figure 3.6: Multi-fixel metrics combined with angular weighting shows
smaller variability compared to single-fixel metrics and
smaller mean bias compared to relative fraction weighting
in a scan/rescan experiment. Bland-Altman plots of the per-

centage change between the scan and the rescan of respectively A
̄FADTI,𝑟𝑜𝑖 (Mean=0.11;SD=1.4), B ̄FADMD,𝑣𝑜𝑙,𝑟𝑜𝑖 (Mean=0.43;SD=0.44, C
̄FADMD,cfo,𝑡𝑠𝑙 (Mean=-0.27;SD=0.51) and D the proposed

̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙
(Mean=0.17;SD=0.53) from Eq. (3.11) across the 38 considered WM

tracts.

high FADMD,𝑎𝑛𝑔 and FVFMF,𝑎𝑛𝑔 , were well aligned and accurately represented

by a single fiber population. The end and start of the pathway displayed lower

FADMD,𝑎𝑛𝑔 and FVFMF,𝑎𝑛𝑔 with smaller relative contributions and weights.

3.4.3 Experiment III: Dyslexia study

The distributions of tract-wide microstructural means for the dyslexic and

control populations are shown in Fig. 3.8. The distribution of tract-wide mean

FA values (
̄FADTI,roi,

̄FADMD,𝑣𝑜𝑙,𝑟𝑜𝑖, ̄FADMD,cfo,𝑡𝑠𝑙 , ̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙) in each group

showed the same behavior, with
̄FADMD,cfo,𝑡𝑠𝑙 and the proposed

̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙
having the highest values, followed by

̄FADMD,𝑣𝑜𝑙,𝑟𝑜𝑖 and then by ̄FADTI,roi. The

same ordering was observed for
̄FVFMF,cfo,𝑡𝑠𝑙 , ̄FVFMF,𝑎𝑛𝑔,𝑡𝑠𝑙 and ̄FVFMF,𝑣𝑜𝑙,𝑟𝑜𝑖 .

The mean of the distribution of tract-wide mean FA and FVF was lower in

the dyslexic population compared to healthy controls in all cases. Two p-

values were below 0.05 when comparing the two groups,
̄FVFMF,cfo,𝑡𝑠𝑙 and

̄FVFMF,𝑎𝑛𝑔,𝑡𝑠𝑙 in the right SLFII. No statistically significant differences were

found using the apparent fiber density (AFD)metric from the FBA framework.
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Figure 3.7: The microstructure along a streamline follows macrostructural
changes through brain regions with different neural fiber config-
urations. The evolution of the relative contributions 𝛼𝑣𝑠𝑘 of two fixels

(in blue and orange) for a single callosal streamline along its path (top).

Segment-specific FA𝑣𝑠 (middle) and FVF𝑣𝑠 (bottom) values computedwith

the UNRAVEL framework using Eq. (3.7).
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Figure 3.8: Estimates of FA and FVF obtained with the UNRAVEL framework
suggest values are slightly lower in children with dyslexia com-
pared to controls. Boxplots of the tract-wide mean of the fractional

anisotropy (
̄FADTI,

̄FADMD,𝑣𝑜𝑙 , ̄FADMD,𝑐𝑓 𝑜,𝑡𝑠𝑙 , ̄FADMD,𝑎𝑛𝑔,𝑡𝑠𝑙), fiber volume frac-

tion (
̄FVFMF,𝑣𝑜𝑙 , ̄FVFMF,𝑐𝑓 𝑜,𝑡𝑠𝑙 , ̄FVFMF,𝑎𝑛𝑔,𝑡𝑠𝑙) and the mean of the fiber den-

sity maps obtained with the FBA pipeline AFD𝐹𝐵𝐴 for the dyslexic (or-

ange) and control (blue) cohort in the right arcuate fasciculus (AF, top)

and the right superior longitudinal fasciculus II (SLFII, bottom).
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Figure 3.9 displays maps of FADTI, FADMD,𝑣𝑜𝑙 , FADMD,cfo and FADMD,𝑎𝑛𝑔 on a

slice of the AF in a control participant. The traditional FADTI values obtained

with DTI are lower overall and present several dark spots in areas where the

AF fibers are crossing other neural fibers. The FADMD,𝑣𝑜𝑙 map shows higher

values and fewer dark spots, while the FADMD,cfo and FADMD,𝑎𝑛𝑔 maps show

an even more uniform FAmap and the dark areas have nearly all disappeared.

The total segment length map 𝑤
𝑣 , obtained with Eq. (3.9), shows the attri-

bution of a higher weight to voxels in the center part of the AF compared to

voxels on the edges.

Arcuate fasciculus

FADMD,cfo

FADMD,ang

Total segment lengthRegion of interest

FADMD,vol

FADTI

2D slice3D view

Weighted maps

Figure 3.9: Metrics maps obtained with angular weighting are less impacted
by the properties of crossing fibers Top-left: representation of the

streamlines of the left arcuate fasciculus tract, color-coded for orien-

tation. Bottom-left: weighted maps. The tract-specific total segment

length map was obtained with Eq.(3.9) and corresponds to the total

length of segments belonging to the AF in each voxel. Right: visual-

ization of the microstructure map over a set of 3D streamlines and a 2D

slice of the fractional anisotropy obtained with DTI (FADTI) and multi-

fixel models with: relative volume weighting (FADMD,𝑣𝑜𝑙 , see Eq. (3.2)),

closest-fixel-only (FADMD,𝑐𝑓 𝑜 , see Eq. (3.3)) and our proposed angular

weight (FADMD,𝑎𝑛𝑔 , see Eq. (3.4)).

Themicrostructuralmaps obtainedwithmulti-fixelmodels combinedwith

angular weighting displayed in Fig. 3.10 show a more uniform orientation in

areas of crossing fibers compared to the maps obtained with the single-fixel

model DTI. The AF (Fig. 3.10A-B) is predominantly aligned in the antero-

posterior direction (green) in the area where it crosses the frontal aslant tract

(FAT), whereas maps obtained with DTI present more diverging orientations
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and a dominant left-right (red) orientation in several voxels. The FADTI ob-

tained was also lower in areas of crossing fibers. The FAT shows similar re-

sults (Fig. 3.10C-D) where it crosses the corpus callosum connections, with

a gain in directionality and a more coherent FVF measure compared to DTI

indices.
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Figure 3.10: Metrics maps using angular weight recover the properties along
the direction of the tract. Microstructure maps of the arcuate fas-

ciculus (A,B) and the frontal aslant tract (C,D). A Color-coded maps

(RGB) of the orientation of the fixel obtained with DIAMOND (DMD)

and C Microstructure Fingerprinting (MF) are compared to maps ob-

tained with DTI. Microstructural maps of the B FA and D FVF are also

compared to the FA obtained with DTI.
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3.5 Discussion

3.5.1 Accuracy of estimation of tract-specific microstructure

When comparing the closest-fixel-only and the proposed angular weighting

strategies with relative volume weighting in multi-fixel metrics and with the

single-fixel metrics, we observed differences in FA and FVF across all three

datasets (Fig. 3.4, 3.6 and 3.8), due to i) multi-fixel information being more ac-

curate than single-fixel information and ii) a focus on the fixels aligned with

the tract of interest in each voxel, leading to less contamination by crossing

fascicles.

In the synthetic phantom (Fig.3.4), the single-fixel model was inadequate

in areas of crossing fibers, as the estimated microstructural properties cor-

responded to neither of the fiber populations present in the voxel. Using a

multi-fixel model capable of discerning the properties of multiple fiber pop-

ulations in a single voxel, the FA and FVF were still underestimated with rel-

ative volume weighting (vol) in the horizontal tracts with high ground truth

values. Showing that a macroscopic analysis that does not take into account

the orientation of the microstructural fixels leads to a sub-optimal estimation

of the underlying microstructure. An increased tract-wide meanwith angular

and total segment length weighting (ang,tsl) compared to relative volume and

region of interest weighting (vol,roi) was also observed in Experiments II and

III, which we attribute to the reduction of contamination by crossing fascicles

and the use of the total segment length (tsl) as a weightedmap (Eq. (3.9)). Vox-

els occupied by more tract segments have a larger weight in the tract-wide

average, which mirrors a higher probability of belonging to the tract of inter-

est. This was further illustrated in Fig. 3.9,3.10, where approaches that did not

make use of the streamline direction conflated the microstructural metrics of

the other fiber tracts intersecting the AF. In Figure 3.9, some of the anoma-

lies visible with traditional DTI disappeared in the FADMD,𝑣𝑜𝑙 map. Anomalies

remaining with FADMD,𝑣𝑜𝑙 were likely due to the averaging of the main fixel

properties with a secondary fixel possessing a different FA. The closest-fixel-

only and proposed angular weighting strategies bypass these issues by using

the orientations obtained from the tractography to more accurately describe

brain structures, without interference from crossing fiber tracts.
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3.5.2 Robustness to tractography andmulti-fixel estimation er-
rors

UNRAVELmakes full use of multi-fixel information and produces results with

less variability than single-fixel metrics. In Experiment II (Fig. 3.6), the de-

creased percentage change of FADMD,𝑣𝑜𝑙 and FADMD,𝑎𝑛𝑔 compared to tradi-

tional DTI indicated a higher reliability of these methods in repeated analyses

of the same patient, which is a desirable feature in longitudinal studies.

At the microscopic scale, observing the varying microstructure along the

course of a single streamline (Fig. 3.7) showed our framework deals with

both “one-to-one” and “one-to-many” correspondence issues between fixels

of neighboring voxels. Indeed, the most tract-relevant population switched

between the two fixels as their orientations became more aligned with the

streamlines of the tract and the method had no issues going from a two-fixel

voxel to a single-fixel voxel. The segment-specific FA𝑣𝑠 and FVF𝑣𝑠 values of
a streamline obtained with UNRAVEL are also consistent with the known

macrostructure of the corpus callosum, with the segments in the middle of

the path presenting higher axonal density. In a configuration with two fiber

populations per voxel (𝐾 = 2), the proposed angular weighting (Eq. (3.4)) is

more robust than the commonly used closest-fixel-only strategy (Eq. (3.3))

when the number of fixels is incorrectly estimated by the local microstruc-

tural model, as seen in Fig. 3.4 and Fig. 3.5, where an incorrect estimation of

the number of fixels in the DIAMOND model led to an overestimation of the

microstructural metric. In addition, areas in which angular weighting com-

putes fixels’ relative contributions close to 1/𝐾 will likely lead to more sta-

ble estimates than with closest-fixel-only, as streamline segments would have

been attributed the microstructural properties of different fixels in the same

voxel based on small differences in orientation. Angular weighting should

also provide more accurate results in areas where there are more fiber pop-

ulations than estimated fixels, as the properties of the undetected fixels will

be distributed among the 𝐾 fixels found by the microstructural model, and

angular weighting ensures every fixel will have an impact if they are close to

the considered orientation.

At the macroscopic scale, the use of total segment length weighting (tsl),
defined by Eq. (3.12), reduces the impact of outlier and false-positive stream-

lines on the proposed tract-basedmetrics, compared to ROI-basedmeans (roi),
defined in Eq. (3.13). The total segment length map in Fig. 3.9 illustrates this

effect, with a reduced weight on the edge of the tract, as well as a weight close

to zero in isolated voxels.
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3.5.3 Flexibility and usability

The proposed UNRAVEL framework requires little computing power and ac-

cepts a wide range of inputs. The choice of a multi-fixel microstructural

model is free as long as each fixel has a principal orientation. This means

many fixel-specific properties can be investigated, from diffusivity to axon

diameter distribution. This is an advantage compared to methods such as

FBA [90] which focus on axon fiber density and bundle cross-section, COM-

MIT [35, 36, 94] and AxTract [96] which require an axon diameter estimation.

With our framework, the input streamlines can be generated by any tractog-

raphy method and segmented into tracts of interest by any approach, from

manual to (semi-) automated [37, 110]. Another important degree of freedom

is the definition of the relative contribution of a fixel to a streamline segment

𝛼𝑣𝑠𝑘 and weighted map 𝛾 
𝑣 . Besides the definitions presented in Section 3.2.1,

additional weighting strategies can be defined and included in our framework.

In cases where tractography is not available, the tract-specific microstructure

maps obtained with relative volume weighting (vol) can be used to perform

traditional voxel-based analysis (VBA) and region-based analysis using the

region of interest weighting (roi) by supplying a ROI as input instead of a

tract of interest, since relative volume weighting is not dependent on the an-

gular information contained in the tractography, as shown in Fig. 3.2. Finally,

our framework enables analysis at different scales: microstructural properties

can be obtained for individual streamlines via Eq. (3.7) as in Fig. 3.5 and 3.7,

as well as volumetric maps specific to a tract via Eq. (3.10) as in Fig. 3.4, 3.9

and 3.10, and tract-wide summary metrics via Eq. (3.11) as in Fig. 3.6 and 3.8.

3.5.4 Limitations

The UNRAVEL framework is affected by errors in its two inputs and may

propagate those estimation errors. Multi-fixel models may incorrectly char-

acterize the fiber populations in a voxel, as in Experiment I (Fig. 3.5). How-

ever, the choice of angular weighting (Eq. (3.4)) was shown to reduce this

impact. Additionally, total segment length weighting was found to reduce

the variability of probabilistic tractography, as seen in Fig. 3.5 and Fig. 3.9.

Nonetheless, the UNRAVEL framework is affected by noise from local esti-

mates, resulting in noisy estimates as in the FVF maps in Fig. 3.4. To address

this limitation, spatial regularization across fixels belonging to similar macro-

scopic tracts could be implemented, as proposed in [82].

Another limitation of our experiments is the restriction ofmulti-fixelmod-

els to only two fixels per voxel (𝐾 = 2), which is known to be insufficient in

regions such as the centrum semiovale where the corticospinal tract, fibers
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from the corpus callosum, and the superior longitudinal fasciculus intersect.

This decision was made due to the challenges in achieving a stable and robust

fit for complex multi-fixel models with up to three fixels using current clini-

cal dMRI acquisitions. Other relative contribution definitions might be more

suitable when 𝐾 > 2, as the relative weights of aligned fixels will decrease as
K increases.

The WM tracts analyzed in our in vivo experiments were limited to long-

range main white matter pathways, and did not include short-range WM

fibers connecting neighboring cortical areas, known as U-fibers. However,

the analysis of such fibers using UNRAVEL should not raise issues beyond

the need for an accurate tractogram and model estimation as inputs. Further-

more, since the UNRAVEL framework is not dependent on a single model or

tractography algorithm, any future improvements in the accuracy of either

input will be compatible with our framework and lead to more accurate re-

sults.

Finally, although changes in FADMD,𝑎𝑛𝑔 and FVFMF,𝑎𝑛𝑔 suggested the same

trend, few statistically significant differences between control and dyslexic

children were found in Experiment III. However, this might be due to the

restricted sample size and small effect size, which is a well-known pitfall of

neuroimaging studies in psychology and psychiatry [111, 112]. Nevertheless,

we demonstrated the feasibility of applying our framework to clinical popu-

lations and the consistency of the metrics obtained with our approach.

3.6 Conclusion

In this study, we have introduced UNRAVEL, a framework combining the

macrostructural information of tractography with the microstructural met-

rics of multi-fixel models. Combining these two scales with the proposed

angular weighting strategy allows tract-specific analyses to be less impacted

by crossing fiber tracts, while retaining some robustness in case of erroneous

tractography or diffusion model estimations. We demonstrated the feasibil-

ity of our framework and the accuracy of our angular weighting algorithm

both on synthetic and in vivo data. The UNRAVEL framework will provide

researchers in the medical field and the diffusion MRI community with a flex-

ible tool to study, visualize and more easily interpret the microstructure of

macroscopic white matter pathways in individual cases as well as population

studies.
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Part II

Application to population
studies

"When a general knowledge of the structure of the brain is acquired
by the student a useful and practical step is gained, because he will
not only be able to describe the situation of a lesion and understand
the descriptions made by others, but he will be in a situation to
intelligently discuss the functions of its parts, and is prepared to
work in the field of discovery."

-William Fuller, 1896
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With the methodologies outlined in Chapter 2 and 3 at our disposal, we

are now better equipped to study the evolution of microstructural metrics

in population studies. In addition to the dyslexic cohort in Chapter 3, the

proposed methods have been applied in several studies analyzing the rela-

tionship between brain function and the microstructural properties of neu-

ral fibers. The studies, either multi-shell or single-shell, focused on different

topics such as unilateral vocal fold paralysis [113], post-lingual deafness and

refractory epilepsy [114].

The results obtained using the proposed methodology in these studies

have been compared with voxel-based analyses, demonstrating an agreement

between the identified tracts and their localized differences, and the voxels

highlighting discrepancies between populations. However, there are limita-

tions to the applicability of these methods. While the filtering algorithm de-

scribed in Chapters 1,2 performs consistently across various datasets as long

as the tractography benefits from a sufficient number of gradient directions,

the framework in Chapter 3 is dependent on the quality of both the tractog-

raphy and the selected diffusion model as errors and biases from both compo-

nents are integrated into the resulting output. As demonstrated in Chapter 3,

the errors in tractography can be mitigated by the streamline weighing, while

the model errors can be lessened by angular weighting. Nevertheless, this

methodology greatly benefits frommulti-shell data with a high number of di-

rections. In instances where a single shell was acquired, the tract properties

can nonetheless be estimated with DTI, as this is equivalent to a simplifica-

tion of the algorithm where there is a single fixel to account for.

The following chapters present two examples of multi-shell studies where

the methodology developed in this thesis has been applied.

The first study, detailed in Chapter 4, focused on the effects of neurorehabil-

itation on the microstructural properties of motor neural fibers in children

with unilateral cerebral palsy and adults with stroke. Participants in both co-

horts experienced limited mobility or limb paralysis due to either abnormal

brain development during pregnancy or childbirth, or a cerebrovascular ac-

cident that caused cellular death in a brain region. Participants were divided

into case and control groups and underwent scans over several months to

study the longitudinal effects of motor rehabilitation on the microstructure

of the corticospinal tract, the neural pathway connecting the spinal cord to

the motor cortex. The microstructure of neural fibers on the lesion-affected

side showed different properties compared to the healthier side, with the af-

fected side’s properties tending towards those of the healthier side over the

course of the study. This change was more pronounced in children, likely due

to their higher neuroplasticity and natural development. This study under-
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scores the potential of intense and long-term neurorehabilitation to enhance

connectivity to motor areas, particularly in children.

The second study, presented in chapter 5, was centered on alcohol use

disorder (AUD), a commonly known but complex condition including affec-

tive, cognitive and motivational dimensions. While AUD is known to induce

whole-brain damages such as grey matter shrinkage and ventricular enlarge-

ment, the microstructural changes it induces in the white matter remain in-

completely understood. This study leveraged multi-shell diffusion MRI and

multi-fixel models, with two aims: i) to investigate differences in white matter

tract microstructure between AUD participants tested at the very beginning

of alcohol withdrawal and a control cohort; ii) to test the effects of 18 days of

abstinence in the AUD group and compare it with a similar delay for retest in

the controls. The primary tracts of interest were the corpus callosum, fornix,

cingulum and the internal capsule. Comparative analyses between the two

cohorts revealed disparities in axial diffusivity and volume fraction across

most tracts. Along-tract analyses further discerned differences that were lo-

calized in specific sections of certain tracts, while in other tracts the impact

was observed all along their pathway. These tract-specific observations bring

further insight on the precise impact of AUD on transcallosal fibers and tracts

associated with the limbic system, and their potential role on the persistence

of AUD. Overall, these findings highlight the long-term vulnerability of tracts

associated with the limbic system in AUD and their potential implications for

the pathophysiology of alcohol-related conditions.
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Assessment of the white matter microstructure in
motor pathways in patients with brain damage
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4.1 Introduction

Brain damage can impact several brain functions depending on the lesion’s

location, including motor skills, sensory processing, cognition, and the over-

all well-being of the affected person. For those suffering from motor deficits,

motor training is a crucial component of neurorehabilitation as it may reduce

motor impairment and enhance recovery through brain plasticity. Under-

standing the extent of brain damage and identifying the damaged areas that

can be recruited, those that are beyond recovery, and those that can predict

motor recovery is essential for obtaining an early and accurate diagnosis of

motor disability and guiding rehabilitation program planning.

Neuroimaging techniques, such as diffusion MRI (dMRI) and its advance-

ments in brain microstructure estimation, have the potential to enhance our

understanding of the link between brain structure and motor recovery [115].

These techniques offer newmethods for assessing microstructural changes in

the damaged brain and predicting patient recovery. Multi-compartment mod-

els and other advancedmicrostructural descriptors have demonstrated the po-

tential of providing more comprehensive descriptions of adults with chronic

stroke compared to control subjects [116, 117, 118]. These approaches, when

compared to indices derived from the traditionally used diffusion tensor imag-

ing (DTI) model [119, 115], have the potential to offer more specific insights

into the structural alterations associated with motor impairments and the re-

sponse to therapy. In the longer term, they could facilitate the development

of predictive biomarkers to guide neurorehabilitation.

The present study leverages these novel approaches to identify damaged

areas of the brain and, more specifically, to assess the microstructural prop-

erties of the neural pathways connecting to motor control areas. We aim to

demonstrate that advanced microstructure analyses can provide deeper in-

sights into the causes of motor impairment and that intensive rehabilitation

programs during the early phase of impairment can improve motor recov-

ery. Two cohorts were recruited for this study: adults who had experienced

a stroke and children with cerebral palsy. Both neuropathologies are charac-

terized by motor impairments leading to varying degrees of dependence for

activities due to brain damage. Both cohorts underwent the Hand and Arm

Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) reha-

bilitation method [120] and were scanned at multiple time points throughout

the study. The microstructural properties of the corticospinal tract were then

assessed at each time point, given its role in motor function and its relevance

in stroke [116, 117, 115].
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4.2 Materials & Methods

4.2.1 Participants

This study was conducted on two cohorts to investigate the impact of motor

training and neurorehabilitation on participants experiencing motor deficits

from distinct pathologies.

1𝑠𝑡 cohort: Children with cerebral palsy

The first cohort consisted of children (N=32) aged 6–18monthswith unile-

sional cerebral palsy (CP), an umbrella term for movement and postural disor-

ders due to brain damage during the brain’s development. The brain lesions

lead to variable limitations in motor function and manual dexterity, which

can impair the execution of daily activities. The children were scanned three

(case group) to four (control group) times to study the effect of an intense neu-

rorehabilitation program on the participant’s motricity. Several participants

of the case group were also scanned four times. The case group followed the

HABIT-ILE rehabilitation program in between the first (E0) and second (E1)

data acquisition sessions whereas the control group followed the HABIT-ILE

method after the third (E2) acquisition session. The timeline of the data acqui-

sition and HABIT-ILE training sessions is illustrated in Fig. 4.1. All children

continued their usual care during the study, including nursery and ongoing

therapy, generally consisting of a few hours of neurodevelopmental therapy

per week. The complete protocol is described in more detail in [121].

2𝑛𝑑 cohort: Adults with chronic stroke

The second populationwas composed of adultswith chronic stroke (N=32)

aged 40 years or more. Stroke is one of the most common causes of motor dis-

ability in adults. Due to a cerebrovascular accident, the blood supply to brain

regions is interrupted, causing the death of the cells within those regions.

This can result in motor, sensory, and cognitive impairments, as well as an

overall decrease in quality of life. The timeline was similar to the one followed

with the first cohort, presented in Fig. 4.1. During the time span between two

scans, the participants kept their usual motor activity and regular clinical re-

habilitation sessions.

Eligible participants presented a diagnosis of hemiparesis following chronic

stroke, i.e., 6 months after the initial symptoms. The lesion location varied

from one participant to another with the right and left Sylvian segment be-

ing the most impacted. Potential participants were excluded if they presented

major cognitive impairment or addictions interfering with the study, uncon-
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Figure 4.1: Timeline of the data acquisition for both populations: childrenwith cere-

bral palsy and adults with chronic stroke. Both cohorts were divided into

a case (in blue) and control (in orange) group. The HABIT-ILE neurore-

habilitation program was followed after E0 by the case group and after

E2 for the control group.

trolled health issues, or any contraindications to magnetic resonance imagery

such as metal implants or pacemakers. Participants signed a written informed

consent ahead of participation. The complete protocol is described in further

detail in [122].

4.2.2 Data acquisition & preprocessing

All participants from both cohorts underwent a dMRI sequence on a 3T GE

SIGNA Premier scanner (GE Healthcare, Chicago, IL) at each data acquisi-

tion session with the following parameters: TR=4837 ms, TE=78 ms, 2 mm

isotropic voxels (in-plane FOV: 220x220mm
2
), 110x110x68 x 170matrix,Δ =35.7

ms, 𝛿=22.9 ms, 64 gradients at b=700, 32 at b=2000, 3000, 5000 s/mm
2
, corre-

sponding to diffusion gradients up to 68.9 mT/m, and 7 interspersed b0 im-

ages.

Compared to the other multi-shell studies presented in this thesis, the first

shell had a b-value of 700 instead of 1000 as the brains of young infants have

higher water content compared to adults, with T2- and ADC-values 25-40%

longer. In these patients the b-value is often made shorter, in the range of 600-

700 s/mm
2
. A useful rule of thumb is to pick the b-value so that (b × ADC) ≈

1, see Appendix A.3 for more information. This change was also applied to

the adult population to facilitate the comparison between both cohorts.

A 3D T1-weighted image (TE=4 ms, TR=2312 ms, TI=900 ms) as well as a

T2-weighted image (TE=97 ms, TE=2502) were also acquired with 166 slices,
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0.8 mm isotropic, in-plane FOV: 256x256 mm
2
for a 166x312x312 matrix.

The preprocessing of the diffusion data was performed using the Elikopy

pipeline [123] and included brain extraction [124], denoisingwithMPPCA [55],

Gibbs ringing correction [56], Eddy currents distortion andmovement correc-

tion [57]. Noise andmovement during the scanwere estimatedwithQUAD [105].

4.2.3 Tractography

Figure 4.2: A Representation of the corticospinal tracts and B the corresponding

regions of seed/inclusion used to isolate the streamlines: the precentral

gyrus (blue), posterior limb of the internal capsule (green) andmedullary

pyramids (orange).

To isolate the corticospinal tracts (CST), a seed region was placed in the

white matter adjacent to the left and right precentral gyrus to select to pri-

mary motor cortex and inclusion regions were added in the posterior limb

of the internal capsule and the medullary pyramids in the brainstem [125],

as shown in Fig. 4.2B. The regions were drawn in the MNI space using the

Harvard-Oxford cortical parcellation [60] and registered to each participant’s

native space. Several participants (stroke: n=5, CP: n=4) were acquired with

fewer slices, removing the inferior part of the brain. For those participants,

only the two superior inclusion regions were used, i.e., the motor cortex and

posterior limb of the internal capsule.

The MSMT-CSD [26] algorithm was utilized for the local modeling to

make full use of the multi-shell data by exploiting the b-value dependencies

of the different tissue types. Streamlines were obtained with the iFOD2 [32]

algorithm available in the MRtrix3 software [126] with the following param-

eters: maximum angle of 15°, step size of 1 mm and cutoff of 0.08. A proba-

bilistic tractography algorithm based on MSMT-CSD was used rather than a

deterministic one for the increased detection of differences in diffusion char-

acteristics between healthy and affected motor pathways previously shown
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in stroke participants [119]. The resulting tracts were cleaned using themeth-

ods developed in Chapter 2 to remove spurious streamlines.

4.2.4 Microstructural models and metrics

To assess the morphological alterations in the CST, the volume occupied by

the tract’s streamlines was utilized to quantify the tract’s spatial footprint.

Specifically, the number of voxels traversed by streamlines attributed to the

CST was aggregated into a voxel count metric. This approach served as a

model-free method to measure the macroscopic volumetric changes seen in

the CST.

Four different diffusionmodels were used in the analysis to capture differ-

ent microstructural changes. DTI [76] was selected as the single-fixel model,

for comparative purposes with prior studies on motor recovery [119, 115].

DIAMONDwas chosen as a multi-tensor and multi-compartment model [20].

Two fiber population compartments and an isotropic volume fraction were

allowed to represent the diffusion signal, all compartments are represented

using diffusion tensors. Each compartment provided an estimation of the

fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) and

volume fraction.

Microstructure Fingerprinting (MF) [21] was chosen as a multi-fixel numer-

ical model, in contrast to DTI and DIAMOND which can be considered ana-

lytical models due to their modelling of the diffusion process as tensors. Simi-

larly to DIAMOND, two fixels and an isotropic compartment were allowed to

approximate the diffusion signal. MF used the two main directions obtained

from MSMT-CSD as input for its metric estimation. Its main output was an

estimated fiber volume fraction (FVF) and a volume fraction.

Additionally, the apparent fiber density (AFD) [29] and dispersion were com-

puted from the integral and width of the fODF lobes obtained from MSMT-

CSD [29]. Only the three main peaks and their AFD were retained from the

full fODF.

The metrics of each model were attributed to the left and right CST of

each participant using the methodology developed in Chapter 3.

4.2.5 Analysis

As a result of gradient cycling within the MRI scanner, the presence of patient

movement induced noise in the resulting scans. The microstructural metrics
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obtained with the aforementioned models, including FA and others, are vul-

nerable to the effects of noise and motion [127, 128]. To mitigate the impact

of the slice-to-volume motion not addressed by the motion correction during

the preprocessing, a linear regression was applied on each metric𝑀 , to lessen

the influence of noise.

𝑀̂ =𝛽0 + 𝛽SNR ⋅ 𝑋SNR,

𝑀𝑟𝑒𝑠 =𝑀 − 𝑀̂,

where 𝑋SNR is the noise estimation metric computed with FSL’s motion cor-

rection routine [105], 𝛽0 is the intercept, and 𝛽SNR is the regression slope. The

tract-specificmetrics𝑀𝑟𝑒𝑠 , enable a comparison of the differences unattributed

to noise in the two cohorts.

The corrected metrics were employed alongside three analytical tools:

Tool I: Evolution of the contra- and ipsilesional sides This entails group-

ing the left corticospinal tracts in participants with left-sided brain lesions

with the right corticospinal tracts of the participants with a right-sided le-

sions into an ipsilesional group. Conversely, the CST on the unaffected side

were grouped into a contralesional group.

Tool II: Symmetry ratio We defined a symmetry ratio (SR) between the

ipsi- and contralesional sides, which tends to one when both tracts present

similar properties.

SR =
𝑀𝑐𝑜𝑛𝑡𝑟𝑎

𝑀𝑖𝑝𝑠𝑖
.

This ratio has the benefit of being less sensitive to the variations due to

movement and noise, as well as reducing the impact of participants having

different metric baselines.

Tool III: Along-tract analysis Using the tools developed in Chapter 2 and

3, an along-tract analysis of the microstructural properties was performed for

the ipsi- and contralesional CST. A representation of the major steps is dis-

played in Fig. 4.3, where both left and right CST are isolated and segmented

into smaller subsections to obtain the evolution of microstructural metrics

along the pathway.
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Figure 4.3: Representation of the different steps of the along tract analysis: A trac-

tography of the ipsi- and contralesional corticospinal tracts (in red and

green, respectively), B segmentation of each tract into smaller subsec-

tion along its pathway and C analysis of the microstructural metrics of

interest for each section along the tract pathway.

4.3 Results

4.3.1 Isolation of the corticospinal tract

The automated generation of corticospinal tracts for children with CP and

adults with stroke revealed streamlines connecting the brainstem to the pri-

mary motor cortex in both hemispheres in 84% (27/32) and 90% (29/32) of

cases, respectively. These tracts, depicted in Fig. 4.4, exhibited accurate anatom-

ical connectionswith a low number of stray streamlines, mostly in the inferior

part of the CST.

Figure 4.4: Examples of the corticospinal tracts generated for three children with

CP (A,B,C) and adults with stroke (D,E,F). The tracts presented have

different levels of asymmetry: high (A,D), medium (B,E) and low (C,F).
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4.3.2 Longitudinal evolution

Figure 4.5: Violin plots of the distribution of the differentmetrics (voxel_count: tract

volume, FVF: fiber volume fraction, RD: radial diffusivity, frac: volume

fraction) across time for the A ipsi- and B contralesional sides of the

CST for the control (orange) and case (blue) adults with stroke. C Distri-

bution of the percentage change between the first and last scan of each

participant for the ipsi- (in red) and contralesional side (in green).

Stroke cohort

The metrics demonstrating the most notable evolution over time in the adults

cohort are presented in Fig. 4.5. A statistically significant increase in the num-

ber of voxels crossed by the CST between time points E0 and E1 was observed

on the lesion side in case participants, indicating an increase in CST volume.
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These time points consisted of the scans taken immediately before and after

the neurorehabilitation training period. Compared to the contralateral side,

the ipsilesional side exhibited a lower voxel count, FVF, and volume fraction,

along with higher RD. Throughout the study, both tracts demonstrated an

increase in voxel count and FVF, while the volume fraction estimated by MF

decreased in both tracts on average. Additionally, the RD slightly decreased

in the ipsilesional side over the course of the study.

The symmetry ratio, displayed in Fig. 4.6, showed a significant increase in

voxel count for the case participants between E0 and E1. Overall, there was

an apparent trend for both voxel count and FVF ratios to tend to 1 over time.

Figure 4.6: Evolution of the distribution of the symmetry ratio of A the voxel count

andB the fiber volume fraction (FVF) between the contra and ipsilesional

sides for the control (orange) and case (blue) group across time for adults

with stroke.

Cerebral palsy cohort

Changes were more apparent in the children cohort, with both the control

and case participants displaying an increased volume for the CST on the le-

sion side at the final scan compared to the initial scan (Fig. 4.7). The control

group also showed a significant increase in volume after the intensive neu-

rorehabilitation training, between time points E2 and E3. Additionally, an

increased volume for the CST was noted on the contralesional side. The ip-

silesional side showed a significant increase in FVF for the control group at

the initial and final scans for the control group. The FA𝐷𝑇 𝐼 exhibited a signif-

icant difference between the control and case groups at time point E1.

Overall, both CST showed an increase of voxel count, FVF, FA, FA𝐷𝑇 𝐼 , coupled

with a decrease in RD, with these changes being slightly more pronounced

on the ipsilesional side.
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Figure 4.7: Violin plots of the distribution of the differentmetrics (voxel_count: tract

volume, FVF: fiber volume fraction, RD: radial diffusivity, FA: fractional

anisotropy) across time for the A ipsi- and B contralesional sides of the

CST for the control (orange) and case (blue) children with CP. C Distri-

bution of the percentage change between the first and last scan of each

participant for the ipsi- (in red) and contralesional side (in green).
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Figure 4.8: Evolution of the distribution of the symmetry ratio of theA fiber volume

fraction (FVF),B FA andC FA obtained with DTI between the contra and

ipsilesional sides for the control (orange) and case (blue) group across

time for children with CP.

The symmetry ratios of the FVF, FA and FA𝐷𝑇 𝐼 also appeared to tend to

1 as the study progressed, although these changes were had low magnitude

and were not statistically significant in most cases (Fig. 4.8).

4.3.3 Evolution along tract

Examining the microstructural metrics along the pathways of the ipsi- and

contralesional CST provided amore detailed insight into the specific locations

where differences between the two tracts arose.

Figure 4.9: Evolution of the different metrics along the pathway of the CST in adults

with stroke forA the ipsi- and contralesional side at E0 (in red and green,

respectively) and B for the ipsilesional side at time E0 and E3 (in red and

orange, respectively).
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Stroke cohort

In the adult cohort, the main differences between the ipsi- and contralesional

sides in voxel count, FVF and RD were mainly located above the internal cap-

sule in the pathways displayed in Fig. 4.9A.

The along-tract symmetry ratios for the corresponding metrics, provided in

the supplementary materials (Fig. C.1B), exhibited similar values along their

pathways at E0 and E3.

Figure 4.10: Evolution of the differentmetrics (voxel_count: tract volume, FVF: fiber

volume fraction, RD: radial diffusivity, FA: fractional anisotropy) along

the pathway of the CST in CP children forA the ipsi- and contralesional

side at E0 (in red and green, respectively) and B for the ipsilesional side

at time E0 and E3 (in red and orange, respectively).
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Cerebral palsy cohort

Similarly to the stroke cohort, the difference between the ipsi- and contrale-

sional sides were mainly situated above the internal capsule (Fig. 4.10). The

differences in the ipsilesional sides throughout the study were more pro-

nounced in the children cohort compared to the adults, with a lower voxel

count, FVF, FA, FA𝐷𝑇 𝐼 and a higher RD in the ipsilesional side. The profiles

of the microstructural properties of the ipsilesional CST were closer to the

profiles of the initial contralesional tract after the study (E3) compared to the

initial scans (E0).

The along-tract symmetry ratios for the corresponding metrics, provided in

the supplementary materials (Fig. C.1A), exhibited reduced variability along

their pathways and show a mean value closer to 1 at E3 compared to E0.

4.4 Discussion

The primary differences observed in this study included increases in both the

volume and fiber density of the CST on the ipsilesional side, with a compara-

tively smaller increase in volume observed on the contralesional side. While

there were instances of a more pronounced increase in CST volume imme-

diately following neurorehabilitation sessions, the majority of changes were

observed over the duration of the study.

While the small sample size limits the number of statistically significant

differences in other metrics, several trends are discernible from the results

presented in the previous section.

4.4.1 Difference between ipsi- and contralesional sides

Themajority of themetrics studied in this analysis showed distinctmicrostruc-

tural properties between the contra- and ipsilesional sides. The evolution

trends were often similar in both sides of the CST, with a more pronounced

change observed in the hemisphere affected by the lesion. The changes ob-

served in the ipsilesional side after the study tended to align more closely

with the properties of the contralesional side than in the initial scan. This

is especially visible in Fig. 4.10, where the ipsilesional tract pathway profiles

tended towards the values of the healthy side, and the shape of the profile

was also closer to the contralesional CST.

Although to a lesser extent, the contralesional side also demonstrated

changes in its microstructure, tending away from the values observed in the

ipsilesional side.
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4.4.2 Difference between adults and children

Both cohorts displayed an increased CST volume, fiber volume fraction and

reduced radial diffusivity. Although dMRI metrics are sensitive but not en-

tirely specific to biological alterations, these changesmay suggest an increased

number of neural fibers connecting to the primary motor cortex and a higher

myelin coverage [129].

In addition to these common trends, there were cohort-specific distinc-

tions. Specifically, the adults cohort exhibited a decrease in volume fraction,

which, when coupled with the increased FVF, could suggest the presence of

more densely packed fibers surrounded by partial volumes of other tissue

types.

The CP cohort displayed more pronounced changes and differences over-

all, characterized by a greater number of statistically significant differences

and tract profiles that more clearly tended towards the profile of the healthy

side after the study.

The children participants also had greater changes in their fractional anisotropy,

estimated either with DTI of the fixel-specific FA obtained with DIAMOND.

DTI exhibited a greater deviation in its metrics and lower anisotropy at the

end of the CST pathway, attributed to the presence of crossing fibers. How-

ever, since the CST is one of the primary white matter tracts, its microstruc-

ture remained discernible despite the presence of crossing regions.

Both the increase rate of change and the increased FA observed in children

compared to the adult cohort are probably due to their ongoing brain devel-

opment. The general increase in FA might reflect the ongoing maturation of

white matter tracts, while the neuroplasticity characteristic of children may

further contribute to these observed differences.

4.4.3 Limitations & future perspectives

Due to the position of several participants in the scanner, the medullary pyra-

mids were not always present in the resulting scans. The region of interest

for the inferior part of the CST was thus made to include a higher portion

of the brainstem to guarantee that the ROI was present in every participant.

This included several fibers exiting the cerebellar peduncles. The automated

filtering of spurious streamlines used often failed to remove these streamlines

connecting the motor cortex to the cerebellum, i.e., fibers belonging to the su-

perior cerebellar fasciculus rather than the CST. This increased the variation

of the metrics estimated in the inferior portion of the CST in the along-tract

analysis.

Furthermore, several participants were acquired with a fewer number of ax-
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ial slices. Brain structures below the occipital lobe were not present in those

scans. For these participants, the CST was tracked with only two regions of

inclusion: the posterior limb of the internal capsule and the motor cortex.

The challenges in obtaining lengthy MRI scans from children with CP re-

sulted in a substantial number of missing time points, with approximately

60% successful scans, compared to a success rate of 90% in adults with stroke.

This substantial amount of missing data may have influenced the outcomes

of the study.

For the along-tract analysis on Fig. 4.10B, the E3 time point was taken

as the final acquisition to make sure every participant had gone through the

neurorehabilitation session, but the first (E0 or E1) and final scans (E1, E2 or

E3) could have been used instead.

Future perspectives include amore detailed analysis of themotor tracts by

refining the ROIs. For example, the pathway of the corticospinal tract could

be modified to incorporate the premotor and sensory cortex. Additionally,

separating the different cortical areas that represent various body parts (such

as the upper and lower limbs) could help isolate functional changes specific to

each body part. Combining these measures with behavioral and motor scores

from participants throughout the study could provide deeper insights into the

mechanisms underlying motor recovery.

Moreover, examining the corticospinal tract pathway below the brainstem

could provide information about the structure of the decussation of motor

fibers and their ipsilateral or contralateral organization.

4.5 Conclusion

Although few statistically significant differences were observed immediately

before and after the HABIT-ILE program, the changes observed through-

out the study hint towards an augmented volume and fiber density follow-

ing the rehabilitation training, perhaps due to the continuous motor therapy

done throughout the study. This increase was more pronounced in the chil-

dren cohort, probably due to their ongoing brain development and increased

neuroplasticity. The changes were also more pronounced in the ipsilesional

corticospinal tract, despite the contralesional side displaying similar trends.

Overall, this study underscores the potential microstructural changes in mo-

tor pathways following intensive rehabilitation programs and their potential

implications for enhancing motor function recovery in individuals with neu-

rological disorders such as cerebral palsy and stroke.
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5.1. INTRODUCTION

5.1 Introduction

Alcohol Use Disorder (AUD) is a condition characterized by a problematic

pattern of alcohol consumption, where the subject presents a loss of control

over its alcohol intake despite the negative consequences on his mental and

physical health, social and working obligations, and relationships [130]. It is a

complex disorder including affective, cognitive and motivational dimensions

and a major public health issue [131, 132]. The direct toxicity of alcohol is me-

diated by astrocyte swelling, which leads to oxidative and nitrosative stress,

impaired intracellular signaling, and modifications of protein and gene ex-

pression [133]. In addition, cofactors such as deficiencies in folate, thiamine,

pyridoxine and zinc may play critical roles in neurodegeneration caused by

alcohol abuse [134]. Magnetic resonance imaging (MRI) of the brain is a valu-

able tool for unraveling the structural and functional underpinnings of AUD

and assessing damages caused by alcohol consumption. Through MRI obser-

vations, it has been shown that chronic alcohol abuse entails severe damage to

the structure and function of the brain, with widespread effects across cortical

and subcortical regions akin to accelerated brain ageing [135], such as gray

matter volume loss [136, 137], ventricular enlargement [138, 139] and reduc-

tion of white matter “coherence” [140, 141]. Grey matter volume was shown

to be largely reduced in several regions of the brain such as the prefrontal cor-

tex and corticostriatal-limbic circuits, including the superior temporal gyrus,

striatum, precentral gyrus, left thalamus and right hippocampus [142, 143].

More recently, the development of richer diffusion-weighted MRI (dMRI)

sequences helped provide insight into the microstructural underpinnings of

AUD in thewhitematter (WM). In 2022, ameta-analysis by Spindler et al. [144]

pooled the results from 18 different studies examining white matter changes

through voxel-basedmorphometry (VBM) and diffusion tensor imaging (DTI).

They revealed four clusters of convergent macro- and micro-structural WM

alterations. These clusters include the genu and body of the corpus callosum,

with extensions to the fornix and the anterior and posterior cingulum bundle,

as well as the right posterior limb of the internal capsule. When conducting

a meta-analysis based on DTI studies only, they found an additional cluster

in the posterior parts of the left corpus callosum.

Studies have been inconclusive regarding the functional repercussions

of these structural findings. Altered prefrontal white matter pathways sug-

gested abnormal structural connectivity, where these alterations might un-

derlie deficits and in executive performance in treatment-seeking AUD pa-

tients [145]. Studies showed compromised integrity of cortico-striatal fibers,

frontal white matter, and limbic pathways, all possibly contributing to exec-
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utive functions and impulse control deficits [146, 147]. A recent study corre-

lated microstructural loss of integrity of the fimbria in AUD subjects to cog-

nitive impairments [148]. Furthermore, higher relapse rates were observed in

individuals exhibiting lower fractional anisotropy and highermean diffusivity

in the corpus callosum and fornix [149]. Finally, microstructural alterations

in the corpus callosum and the internal capsule of AUD patients correlated to

the presence of panic disorder as a comorbidity [150].

Spindler et al., concluded their metananalysis by highlighting the impor-

tance of studies designed to unravel the respective behavioral implications

of the different clusters of WM alterations, and to evaluate the extent of re-

versibility of these alcohol-related WM changes. Our study was designed as

a first attempt to fill this gap in a cohort of 53 AUD patients, admitted at our

university hospital for alcohol withdrawal, and carefully selected to still be

actively drinking. The alterations of white matter tracts on the day of ad-

mission were examined to evaluate whether the above-mentioned findings

using dMRI could be replicated. These findings were compared with behav-

ioral measures of depression, anxiety and craving taken by validated ques-

tionnaires obtained on the next day. Then, the evolution of these alterations

after a period of supervised withdrawal of 18 days was investigated. Results

were compared with a control population of 20 healthy subjects, that were

also tested twice with an 18-day interval.

From a methodological point of view, most existing studies rely on Diffu-

sion Tensor Imaging (DTI) [11] for the local modelling. However, DTI is lim-

ited in its ability to characterize fibers in areas of crossing fascicles. Moreover,

the use of tools such as Tract-based spatial statistics (TBSS) [151] may com-

promise spatial resolution due to the registration of the Fractional Anisotropy

(FA) skeleton, in contrast to analyses conducted in native space. Additionally,

techniques such as VBM [152] may blend adjacent tract information due to

the smoothing step and the registration of misaligned brain structures result-

ing from brain deformations or differences in the folding pattern.

The present study addresses these limitations by leveraging multi-shell, high-

gradient dMRI data, analyzed with a multi-fixel model. Multi-fixel models es-

timate the properties of multiple fiber populations per voxel, known as fixels,
enabling the investigation of microstructural metric evolution along specific

tracts without taking into account the microstructural properties of crossing

tracts. The selection of the tracts of interest is based first on the meta-analysis

by Spindler et al. but also confirmed by the results of amulti-fixel whole-brain

analysis.
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5.2 Materials & Methods

5.2.1 Participants

Participants were recruited in a population of patients diagnosed with AUD

and hospitalized at Cliniques Universitaires Saint-Luc for a three-week al-

cohol withdrawal. Patients were actively drinking until the day of admis-

sion; their last alcohol intake had to be the day of admission or the day

before. Exclusion criteria were the presence of severe psychiatric comor-

bidities (i.e., schizophrenia, bipolar disorder) as estimated by a psychiatrist

(MS, PdT), chronic inflammatory diseases (i.e., lupus, vasculitis), regular use

of anti-inflammatory drugs, the presence of metallic implants (i.e., pacemak-

ers) or unremovable jewelry causing artifacts in the MRI scans. Fifty-three

patients met these criteria and were willing to participate in the study. The

sample was constituted of 42 men and 11 women, with a mean age of 47,64

years (SD:±10.5; minimum: 28, maximum: 71). The majority of patients were

smokers (29 smokers/24 non-smokers). Their average daily alcohol consump-

tion was 17.34 units (SD:±11.35; 1 unit = 10g of ethanol). The difference in

alcohol intake between men and women was not statistically significant (18.9

units ±11.72 for men vs 11.36 units ±7.67 for women, F = 2,192, p-value =

0,145). They underwent MRI scans on the day of admission (D1) and after 18

days of withdrawal (D19). In the initial first seven days, participants received

a treatment with oral diazepam (a benzodiazepine) to prevent the emergence

of withdrawal symptoms (i.e., seizures, confusion), which was progressively

tapered.

Additionally, a control group comprising 20 healthy adults was recruited

for comparative analysis. They did not differ for age (mean age was 51.3 years

±15.07, p=0.245) or gender (13 men/7 women, p=0.233). For 6 patients, tech-

nical problems occurred during the first MRI acquisition. Four more patients

had insufficient data quality for the diffusion-weighted MRI sequence. This

left a total of 43 patients for E1. Two patients withdrew their consent before

E2, two others were excluded for alcohol reconsumption, and one patient had

to leave the hospital for family reasons. One patient had the second MRI at

E2 but the quality of the diffusion data was insufficient. One control subject

also dropped out. Thus 37 a total of patients and 19 controls had their two

interpretable scans at D1 and D19, see Fig 5.1 for a summary of the dropouts.

The experiment was carried out with respect to the ethical standards of

the Declaration of Helsinki and received approval by the Ethics Committee

of the University Hospital of Saint-Luc (number: B403201523514).
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Figure 5.1: Simplified representation of the total participants in the case and control

groups, as well as the respective dropouts in each cohort for each acqui-

sition at admission (E1) and after the 18 day abstinence period (E2).

5.2.2 Behavioral assessment

In all individuals on the second day of the program (D2), behavioral data

was collected using validated questionnaires, including the Beck Depression

Inventory (BDI) for depression, the State Anxiety Inventory (SAI) for anxi-

ety, and the Obsessive Compulsive Drinking Scale (OCDS) for obsessions and

compulsions related to drinking (Fig. 5.2B).

5.2.3 Data acquisition and pre-processing

The 37 AUD participants underwent two dMRI scans: the first and second

scans were performed on day 1 and 19 of the three-week withdrawal period.

Similarly, the 19 healthy adults underwent two dMRI scans 18 days apart. All

scans were performed on a 3T GE SIGNA Premier scanner (GE Healthcare,

Chicago, IL) with the following parameters: TR = 4837 ms, TE = 80 ms, 2 mm

isotropic voxels, in-plane FOV: 220 × 220 mm
2
, 110x110x68 x 168 matrix, Δ

= 35.7 ms, 𝛿 = 22.9 ms, 64 gradients at b = 1000, 32 at b = 2000, 3000, 5000

s/mm
2
, corresponding to diffusion gradient intensities up to 68.9 mT/m, and

7 interspersed b0 images.

Preprocessing of the diffusion datawas performed using the Elikopy pipeline [123]

and included brain extraction [75], thermal denoising [55], Eddy-current dis-

tortion and head-motion correction [57] (Fig. 5.2A). Noise andmovement dur-

ing the scan were estimated with QUAD [105].

A 3D T1 image was also acquired with each scan with the following param-

eters: TE = 2.96 ms, TR = 2188.16 ms, TI = 900 ms, 156 slices, 1 mm isotropic,

in-plane FOV: 256 × 256 mm
2
.
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Figure 5.2: Global overview of the analysis pipeline. The two main inputs are: A
preprocessed diffusion MRI data and B behavioral assessments. The C
metric outputs of the multi fixel model are combined to create D whole-

brain microstructure maps. The maps are used to detect clusters of inter-

est. The locations of the clusters are used to select tracts of interest and

E tractography is then generated to obtain tract-specific microstructural

metrics.

5.2.4 Microstructural model

To evaluate themicrostructural differences between both cohorts, DIAMOND [20]

was selected as the multi-fixel model. DIAMOND provided tensor-derived

metrics, including fractional anisotropy (FA), axial diffusivity (AD), radial dif-

fusivity (RD), and mean diffusivity (MD) for each estimated fixel (Fig. 5.2C).

FA is an index of white matter coherence that decreases when neural fibers

are damaged. AD represents the diffusivity in the primary direction of the

ellipsoid (longitudinal or parallel diffusivity), whereas RD represents the dif-

fusivity along the two axes perpendicular to the axial diffusivity (transverse

or perpendicular). MD represents the average isotropic diffusivity.

Two fiber populations and an isotropic signal contribution were allowed

in each voxel, each compartment was attributed a volume fraction. The dif-

fusivity of the isotropic compartment was set to 3 ∗ 10−9 𝑚2/𝑠 to match the

diffusion coefficient of free water at 37°C.
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5.2.5 Whole-brain analysis

The per-fixel metrics𝑀𝑘 estimated by DIAMONDwere aggregated into a sin-

gle microstructure map per metric using the relative volume fraction weight

for the mean voxel value [77]. The weighted metric will be noted as

𝑤𝑀 =
∑2

𝑘=1 𝑓𝑘𝑀𝑘

∑2
𝑘=1 𝑓𝑘

, (5.1)

where 𝑀 is the metric, 𝑘 the fixel number and 𝑓 its relative volume frac-

tion.

Volume-weighted microstructure maps were computed for each subject

(AUD and control) at E1 and E2 (Fig. 5.2D). A voxel-based analysis was per-

formed on all microstructure maps. We ran a single-factor analysis of vari-

ance (ANOVA) comparing four groups: AUDmale subjects, AUD female sub-

jects, male controls, and female controls. Additionally, we ran a correlation

between subject values and covariate values computing the age of partici-

pants. The homogeneity of the slopes was examined, and no differences were

found between groups in the clusters of interest, concluding that age was not

a confounding factor in our analysis. A threshold of 200 voxels per cluster

and a p-value of 0.001 were selected for significance.

5.2.6 Tracking of the neural pathways of interest

Based on the MNI peak-voxel coordinates of clusters of white matter alter-

ations [144], tractography was used to generate streamlines specific to four

tracts of interest intersecting the voxels coordinates (Fig. 5.2E), namely the

fornix, the corpus callosum, the cingulum and the tracts passing through the

internal capsule, illustrated in Fig. 5.3.

The MSMT-CSD [26] algorithm was utilized for the local modeling to

make full use of the multi-shell data by exploiting the b-value dependencies

of the different tissue types. Streamlines were obtained with the iFOD2 [32]

algorithm available in the MRtrix3 software [126] with the following param-

eters: maximum angle of 15°, step size of 1 mm and cutoff of 0.1. All the

regions of interest (ROIs) for the inclusion zones were drawn to have at least

5mm of width in the MNI space to ensure that all ROI had at least two voxels

of depth when registered in the native diffusion space. The registration of the

ROIs was done using a Python implementation of the ANTS algorithm [153],

which employed both linear and nonrigid transformations to optimize the

mutual information between the FA maps on the patient’s native space and

the FSL HCP1065 FA template. The output was cleaned by removing stream-

lines with an insufficient number of neighbors along the tract pathways based
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on kernel density estimates [41]. Each bilateral tract of interest was divided

into its left and right component.

The tracts and inclusion zones used to generate the streamlines are shown

in Fig. 5.3 and detailed below:

Figure 5.3: Representation of the tracts of interest (A,C,E,G) and the corresponding
seed (in blue) and inclusion (green, intermediary; orange, termination)

regions used to generate the streamlines (B,D,F,H) of the fornix (A,B),
cingulum (C,D) internal capsule (E,F) and corpus callosum (G,H). The

corpus callosum is further divided into five regions.
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The fornix (Fig 5.3A,B) is a bundle of neural fibers connecting the hypotha-

lamus to several subcortical structures. It is linked to memory formation and

provides mnemonic representations to brain structures guidingmotivated be-

havior [154]. The inclusion ROIs for the fornix and fimbria were the columns

(anterior pillars) and the crura (posterior pillars) of the fornix, and their con-

nections to the hippocampus [154].

The cingulum (Fig 5.3C,D) is a central structurewhich interconnects frontal,

parietal and medial temporal brain regions as well as subcortical nuclei to

the cingulate gyrus. It is implicated in executive control, emotion, appraisal

of pain and reinforcement of behavior reducing it (dorsal cingulum), and

episodic memory (parahippocampal cingulum) [155]. The ROIs used to gen-

erate the main pathway of the cingulum were the anterior part of the cingu-

lum near the genu, and its midcingulate and parahippocampal portions [155].

The internal capsule (Fig 5.3E,F) is located in the inferomedial portion of

each brain hemisphere; it is a two-way tract for the transmission of informa-

tion to and from the cortex. In the Spindler et al. review [144], it was mostly

the posterior limb of the internal capsule, which contains corticospinal and

sensory fibers, that showed significant white matter alterations. The ROIs

used for the generation of the tracts passing through the internal capsule

were the medullary pyramids and the posterior limb of the internal capsule.

The Corpus Callosum (CC) (Fig 5.3G,H) is the main interhemispheric

white matter tract, with an important role in communicating perceptual, cog-

nitive, and learned information [156]. The ROIs used for the isolation of the

corpus callosum tracts were the left and right cortex as well as the corpus cal-

losum proper. The CC was further divided into five subsections (displayed in

the sagittal view on Fig 5.3J) using Hofer & Frahm’s scheme [156]: the genu,

anterior midbody, posterior midbody, isthmus and splenium.

5.2.7 Tract microstructure analysis

With the tracts of interest and microstructure estimates at our disposal, the

subsequent step consisted of computingmaps (Fig. 5.4B) and averages (Fig. 5.4E)

for each metric in the tracts of interest (Fig. 5.4C). For each region, estimates

of the FA, AD, RD, MD and volume fraction of the diffusion tensors obtained
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with DIAMOND were reported. The mean metric value per tract was ob-

tained with the UNRAVEL framework using the angular weighting for the

attribution fixel properties, and the streamline density weighted average to

decrease the effect of stray streamlines [77, 74].

To provide more insight on the specific localization of differences between

the two cohorts, the evolution of the metric values along the tract pathway

(Fig. 5.4G) was calculated by partitioning the mean trajectory into eight sub-

sections (Fig. 5.4D) using the methodology described in [41].

Figure 5.4: Representation of the analysis pipeline, the preprocessed dMRI data (A)
is processed with multi-fixel models to estimate microstructure metrics

(B) and with tractography algorithms to generate the streamlines of in-

terest (C). Both are then combined to provide an average metric per tract

(E) which is corrected for movement (F). The tracts are also divided into
subsections along their pathway (D) to obtain the metric evolution along

the tract trajectory (G).

Due to the implementation of gradient cycling on theMRI scanner, patient

movement in the scanner introduced noise. This slice-to-volume motion is

not addressed by the head-motion correction during the preprocessing. Since

metrics such as FA and others are susceptible to the influence of noise and

motion [127, 128], we opted to apply linear regression on each metric 𝑀 to

remove the influence of noise (Fig. 5.4E)
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𝑀̂ =𝛽0 + 𝛽SNR ⋅ 𝑋SNR,

𝑀𝑟𝑒𝑠 =𝑀 − 𝑀̂,

where 𝑋SNR is the noise estimation metric computed with FSL’s motion cor-

rection routine [105], 𝛽0 is the intercept, and 𝛽SNR is the regression slope. The

outcome consisted of tract-specific metrics 𝑀𝑟𝑒𝑠 , enabling a comparison of

differences unattributed to noise between the two cohorts (Fig. 5.4F).

The microstructural metrics of the AUD cohort and control cohort were com-

pared with Welch’s t-tests to account for the unequal variances and unequal

sample sizes. To account for multiple comparisons, the Benjamini–Hochberg

procedure was applied with a false discovery rate set to 𝛼 = 0.05.

5.2.8 Behavioral associations

Behavioralmeasureswere first analyzed independently from dMRI data. Mea-

sures of depression, obsession-compulsion, and anxiety were compared be-

tween subjects and controls at admission (E1), as well as within subjects be-

tween E1 and E2.

Then, correlations between behavioral scores and tract-specific microstruc-

tural metrics at E1 (FA, AD, RD and MD) as two independent variables were

computed to explore the link between dMRI metrics and behavior. A thresh-

old of a p-value of 0.05 was set for significance.
Using a linear regression model, we tested whether microstructural metrics

values that correlated with a behavioral score at E1 could predict the evolu-

tion of the said behavioral score at E2.

5.3 Results

5.3.1 Clusters highlighted in the whole-brain analysis

The analysis of the microstructural maps representing the volume fraction

weighted metrics obtained with Eq. (5.1) identified several clusters of inter-

est. Among the areas most impacted in terms of volume weighted AD (wAD),

displayed in Table 5.1, were the left and right cingulum, the corpus callosum,

and the fornix.

For the clusters found with the volume weighted RD (wRD), also displayed

in Table 5.1, the left and right cingulum were again prominent, along with

several clusters in the corpus callosum.
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MNI coord.

# x y z t-value p-value Anatomical label

wAD
1 8 30 21 7.514 0.000000 Right cingulum
2 11 32 −16 5.396 0.000001

3 0 −15 −33 5.397 0.000001 Left cingulum
4 3 −8 4 5.734 0.000000 195R

5 −1 24 31 6.930 0.000000 179L

6 −10 −29 14 5.124 0.000004 Corpus callosum
7 −3 5 −17 5.864 0.000000 Fornix
8 0 −32 54 5.204 0.000003 67L

9 −2 49 10 6.094 0.000000 187L

10 −10 −2 11 5.705 0.000000 Fornix

11 −32 12 −8 5.976 0.000000

Left inferior

frontal fasciculus

12 −33 3 6 5.582 0.000001 173L

13 −40 26 8 5.758 0.000000

14 −43 1 −15 6.027 0.000000 77L

wRD
1 39 −27 23 −5.833 0.000000 Right Medial Lemniscus

2 50 6 −4 6.283 0.000000 74R

3 22 42 22 −5.422 0.000001

4 19 33 33 −6.395 0.000000

5 20 −43 53 −5.961 0.000000

6 15 −55 40 −4.975 0.000007 Corpus callosum
7 18 57 14 −4.644 0.000022

8 12 −18 49 −5.661 0.000001 Corpus callosum
9 8 33 17 −6.414 0.000000 Right cingulum
10 0 15 33 −5.334 0.000002 180R

11 10 −32 9 5.886 0.000000 Corpus callosum
12 0 −20 51 7.896 0.000000 67L

13 −1 7 53 5.832 0.000000 1L

14 −3 47 14 6.536 0.000000 179L

15 −2 −33 6 5.526 0.000001 Corpus callosum
16 −1 11 −12 6.269 0.000000 49L

17 −5 −59 25 −6.198 0.000000 Left cingulum
18 −13 41 40 −4.791 0.000013 5L

19 −14 20 39 −5.456 0.000001 Corpus callosum
20 −24 −36 −21 5.208 0.000003 103L

21 −27 45 1 −5.692 0.000001

Left Superior

Longitudinal Fasciculus

22 −47 11 −11 5.985 0.000000 77L

Table 5.1: Values of the peak voxel coordinates in MNI space, t-values and p-values,
as well as the corresponding anatomical labels, for each statistically sig-

nificant cluster of the wAD and wRD metrics.
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5.3.2 Microstructure of the tracts of interest

The statistically significant p-values resulting from the Welch’s t-tests, com-

paring both cohorts at each time frame for each tract of interest, are presented

in Fig. 5.5 to Fig.5.8. Additional graphs are depicted in the supplementary ma-

terials (Fig. C.2).

Figure 5.5: Representation of A the genu of the corpus callosum (CC), B the evo-

lution of AD tract-specific along the tract pathway, and C violin plots

of the distribution of the genu of the CC microstructure metrics for the

AUD (blue) and control (orange) population, before (E1) and after (E2)

an 18-day period.

The tract-specificADwas significantly lower in the genu of the CC (Fig. 5.5C),

the left fornix (Fig. 5.7C) and the left and right cingulum (Fig. C.2B,C) for the

AUD participants compared to controls. The evolution of the metric along the

tracts showed a global decrease of the mean AD for participants with AUD in

the genu of the CC (Fig. 5.5B), with a decreased mean value across the whole

length of the tract.

Conversely, the along-tract analysis in Fig. 5.7B indicated that the primary

differences in the fornix between both cohorts originated in the body of the

fornix, with less impact in the crura and fimbria.

The volume fraction was higher for the AUD participants in the genu and

isthmus of the CC (Fig. C.2A) and in the streamlines passing through the in-

ternal capsule (Fig. 5.6C).

Furthermore, differences in the streamlines passing through the internal cap-

sule were predominantly localized in the middle section of their pathway,

specifically when the fibers crossed the internal capsule (Fig. 5.6B).

The FA in the left and right cingulum were lower in participants with

AUD, as shown in Fig. 5.8C. The main differences between control and AUD

were located in the dorsal section of the cingulum (Fig. 5.8B). The temporal
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Figure 5.6: Representation of A the left streamlines passing through the internal

capsule, B the evolution of the tract-specific volume fraction along the

tract pathway, andC violin plots of the distribution of themicrostructure

metrics for the AUD (blue) and control (orange) population, before (E1)

and after (E2) an 18-day period.

Figure 5.7: Representation of A the left fornix/fimbria, B the evolution of tract-

specific AD along the tract pathway, andC violin plots of the distribution

of the fornix microstructure metrics for the AUD (blue) and control (or-

ange) population, before (E1) and after (E2) an 18-day period.

Figure 5.8: Representation of A the left cingulum, B the evolution of tract-specific

FA along the tract pathway, and C violin plots of the distribution of the

cingulummicrostructuremetrics for theAUD (blue) and control (orange)

population, before (E1) and after (E2) an 18-day period.

109



Chapter V

section was characterized by a higher standard deviation across participants

in AUD and controls.

Finally, there was a decrease in MD in the left and right fibers passing

through the posterior limb of the internal capsule in the AUD cohort after

the abstinence period (Fig. C.2D).

5.3.3 Differences in behavioral scores and correlations

Behavioral measures were initially examined independently. At E1, subjects

exhibited higher scores for depression (BDI), anxiety (SAI), and obsessions-

compulsions (OCDS) compared to controls, a difference that was statistically

significant (Table 5.2). Among the subjects, there was a significant reduction

in all behavioral measures between E1 and E2 (also shown in Table 5.2).

E1 vs E2 vs Controls

Mean Mean t-value p-value Mean t-value p-value

BDI 22.41 14.41 4.874 <0.001 5.42 8.136 <0.001
OCDS 14.65 8.27 5.567 <0.001 1.32 10.430 <0.001
SAI 44.57 38.84 3.455 <0.001 29.16 5.746 <0.001

Table 5.2: Comparison of behavioral scores between E1 and E2 in case subjects and

between case and controls at E1, and for several questionnaires: Beck

Depression Inventory (BDI) for depression, the State Anxiety Inventory

(SAI) for anxiety, and the Obsessive Compulsive Drinking Scale (OCDS)

for obsessions and compulsions related to drinking.

Regarding the correlations between microstructural metrics and behav-

ioralmeasures computed at E1 for subjects, significant associationswere iden-

tified between depression and both the tract-specific FA and RD in several

regions (Table 5.3). Specifically, a high depression score was correlated with

a low FA, and a high RD. However, no significant correlations were observed

for AD andMD; also, no correlationswere found for anxiety andOCDS scores.

The prediction of the evolution of the depression score at E2 from the

tract-specific FA and RD values correlating with depression at E1 using a lin-

ear regression model did not produce any significant results.

110



5.4. DISCUSSION

Pearson (r) p-value

FA
Anterior midbody of the corpus callosum −0.365 0.026
Posterior midbody of the corpus callosum −0.354 0.032
Isthmus of the corpus callosum −0.514 <0.001
Splenium of the corpus callosum −0.340 0.039
Left internal capsule −0.382 0.020
Right internal capsule −0.375 0.022

RD
Posterior midbody of the corpus callosum 0.325 0.049
Isthmus of the corpus callosum 0.477 0.003
Right fornix 0.354 0.037
Left internal capsule 0.363 0.027
Right internal capsule 0.382 0.020

Table 5.3: Significant correlations between the tract-specific diffusion metrics and

behavioral measures in the group of subjects at E1.

5.4 Discussion

5.4.1 Controls vs AUD

The more pronounced differences appear in the comparisons between the

AUD population and the control group.

In the whole-brain analysis, the clusters highlighted several areas within

the left and right cingulum and the corpus callosum, which presented lower

wAD and higher wRD in AUD patients than in controls. Furthermore, the

fornix showed a lower wAD in AUD patients. These regions were also iden-

tified as clusters of convergent alterations by Spindler et al. [144]

Three other regions, which did not appear in the later meta-analysis, were

also found as clusters of interest in our analysis. The left inferior frontal fas-

ciculus plays a role in language processing and goal-oriented behavior [157].

The medial lemniscus is implicated in sensory function. The left superior

longitudinal fasciculus is an associative bundle of tracts involved in speech

processing and visuospatial functioning [158].

In the tract-specific analysis, the tracts affected by chronic alcohol con-

sumption in this study were the left fornix, left and right cingulum, the left

internal capsule and the genu of the corpus callosum. These tracts predomi-
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nantly exhibited either a decreased AD compared to controls, or an increased

fiber fraction. The cingulum also displayed a reduction in FA among the AUD

participants.

Furthermore, an inverse correlation between the tract-specific FA and depres-

sion scoreswas found in sections of the corpus callosum, namely the splenium

and isthmus, and the internal capsules. A previous study in depressive sub-

jects showed an inverse correlation between FA in the corpus callosum and

peripheral inflammation [159], which could be the underlying mechanism in

AUD subjects as well.

Most dMRImetrics do not directly measuremicrostructure; although they

are sensitive to biological changes inmicrostructure, they lack specificity for a

singular change [160]. Despite this limitation, the significance of each metric

can be hypothesized based on common interpretations and an understand-

ing of the associations between biology and metrics derived from prior post-

mortem studies. The observed decrease in AD may suggest axonal degen-

eration or deletion [129]. The increased volume fraction associated with a

fixel may be indicative of increased fiber density or inflammation in neural

fibers. Additionally, since the volume fractions of the different compartments

always sums to unity, the increased volume fraction could also result from a

reduction in either the volume of crossing fibers or the volume attributed to

isotropic diffusivity, such as cerebrospinal fluid or extracellular bodies.

The exact biological processes causing these changes need to be investigated

in further studies, with histological analyses.

The microstructural alterations in the fornix are consistent with previ-

ous studies which depicted a reduction in FA [148] and indicate that the de-

creased FA observed with DTI might be due to a decreased AD rather than

an increased RD. Excessive alcohol consumption influences the fornix mi-

crostructure, with possible consequences for memory formation and cogni-

tive flexibility.

The impact of AUD on the dorsal part of the cingulum might influence the

regulation of executive control, high-level processing, and emotion forma-

tion [155].

Moreover, AUD may influence the regulation of emotions through its effects

on the neural fibers traversing the genu of the CC, also known as the for-

ceps minor. These tracts present connections in the prefrontal cortex and are

known to mediate structural connectivity among central executive, salience

and default mode networks [145]. Prior DTI studies have linked the forceps

minor microstructure to cognitive reappraisal, a central process of emotion

regulation [161].
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Overall, our study confirms the existence of several clusters of consistent

microstructural alterations in AUD subjects. These clusters are part of white

matter tracts of the limbic system, regulating emotions, behavior and long-

term memory, and the prefrontal cortex, which manages competing goals, as

well as executive, affective andmotivational functions [162]. Significant asso-

ciations between depression scores and FA in clusters of the corpus callosum

and of the internal capsule point to a link between axonal deletion or degener-

ation and the depressive symptoms present inmost AUDpatients beforewith-

drawal. Altogether, these observations support that alcohol-consumption in-

duces a self-perpetuating cycle in AUD patients by altering the brain white

matter structure, which induces depression and detrimentally influences cog-

nitive faculties related to judgment and self-control, consequently sustaining

a pattern of excessive intake.

Our study highlights the potential of multi-fixel and tract-specific analy-

sis to offer more comprehensive insights than conventional analyses, such as

the frequently observed reduction in FA in affected regions (fornix, cingulum,

genu) [163, 148], which our findings suggest may be driven by a concurrent

decrease in AD rather than a decrease of fiber volume.

5.4.2 Limitations

This study presents several limitations that could be addressed in future re-

search. Firstly, an abstinence period of 18 days might be too short to notice

microstructural changes, as alterations during early abstinence have been re-

ported within a broader range of 2-6 weeks [163].

Additionally, the sample size was limited, and the findings should be repli-

cated in a larger cohort to confirm their validity.

Furthermore, the cingulumwas considered as a single, continuous bundle.

However, it can be divided into two, three or five regions each with different

connections in the cingulate cortex and functions [164, 155].

5.5 Conclusion

Previous studies have underlined the need for innovations in data processing

and computer modelling to clarify previous observations. This study high-

lights the potential of leveraging multi-shell data and multi-fixel microstruc-

tural modeling to refine the description of the underlying biological processes

associated with chronic alcohol consumption. The impact of alcohol on the
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microstructure of white matter tracts associated with the limbic system and

transcallosal connections is demonstrated to remain into early abstinence,

revealing both localized and widespread alterations. The persistence of alter-

ations of diffusion metrics in early abstinence, despite a fast improvement

of behavioral measures, points to long lasting effects of excessive alcohol

consumption on these structures rather than a faster-recovering effect at-

tributable for example to inflammatory processes. However, this would have

to be confirmed by future studies examining the evolution of diffusion met-

rics into late abstinence. Integrating these observations with other modalities

could unveil new biomarkers, paving the way for the development of person-

alized medicine with practical outcomes benefiting people affected by AUD.
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Before concluding this manuscript, we will go over the context and main

results of the methodologies and applications described in the previous sec-

tions, along with my current perspective on their practical application, limi-

tations, and the key concepts that should be investigated for future improve-

ments. A broader view of the integration of dMRImeasures with other modal-

ities will then be briefly explored.

Synthesis of the main results

Adapting the tractography algorithm with parameter maps

The need for tract-specific parameter values in tractography emerged due to

white matter tracts displaying different curvatures and geometries depend-

ing on the location of the gray matter regions they connect. Tracts traversing

areas along the white-gray matter interface, which folds around the different

gyri and whose diffusivity is more isotropic, require a higher maximum angle

between tractography steps and a lower termination threshold.

These tractography parameters are typically manually adjusted based on the

specific tract of interest, but this could bemanaged using a singular parameter

map. This approach would enable the generation of different types of white

matter tracts with diverse geometrical or structural properties with a single

tractography. Adapting most tractography algorithms to incorporate this ap-

proach is generally straightforward and conceptually simple. While only an

angular map with a varying maximum angle parameter has been presented

in Chapter 1, this modification could be extended to other parameters, such

as a variable step size or streamline termination threshold.

Ideally, location-dependent parametermaps should be determined through

histological analyses, leading to the creation of open-source maps in the long

term. This would allow users to more easily analyze different types of tracts

exhibiting distinct properties such as the U-fibers along the cortex, deepwhite

matter tracts or the neural fibers of the cerebellum.

Easier tract generation

Currently, strategies for generating specific white matter tracts can be cat-

egorized into two main approaches: automated procedures based on atlases

and manual procedures based on the delineation of ROIs. While atlas-based

strategies have improved in recent years [165, 37], their accuracy in seg-

menting non-standard brains and defining patient-specific tracts outside of

pre-defined regions still has room for further improvement. For this reason,

manual input remains essential for delineating specific tracts in highly de-
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formed brains. The tools developed in Chapter 2 aim to reduce the manual

effort needed to produce clean tracts, thereby decreasing the time required

for analyses.

My perspective on this matter is that tract generation should involve as

few parameters as possible, with those parameters kept as consistent as pos-

sible to allow for easier comparisons between tracts, patients, and studies.

Adjusting parameters between regions for a single patient hinders tract com-

parisons in patient-specific analyses and, varying parameters between pa-

tients interferes with the results in population studies. Ideally, the number

of inclusion ROIs should be limited to a low number, as increasing this num-

ber introduces user bias on the expected pathway. It is possible to generate a

number of biologically implausible tracts by adding numerous inclusion and

exclusion regions and setting non-strict tractography parameters, such as a

low cutoff, a high number of trials, and a high maximum angle. Therefore,

limiting the number of inclusion regions and restricting tractography param-

eters offers a more robust and less complex approach, with fewer variables

involved.

Furthermore, filtering algorithms should be fast and straightforward to

implement. If only a few steps are required to generate a filtered version of

the tract, it allows the user to quickly assess whether the filtered output is

valuable. The filtering algorithm introduced in Chapter 2 is fast and main-

tains the integrity of the tract shape, even in regions of low tract density.

Conservative approaches are essential to avoid overly relying on processes

that might inadvertently discard information.

A framework for multi-fixel analysis

Multi-fixel models produce microstructural properties for each fixel, result-

ing in multiple volumes for each property. However, these fixels often display

coherence issues between adjacent voxel due to the complex interweaving of

neural pathways in brain white matter, which is crowdedwith regions of fiber

fanning and crossings. Ordering the fixels coherently without introducing bi-

ological criteria or biases is challenging, leading to the distribution of fixels

representing a single tract across different volumes.

The UNRAVEL framework, introduced in Chapter 3, addresses this issue

by enabling users to attribute fixel properties to a specific tract across these

volumes. The framework offers customizable attribution strategies, includ-

ing tract-agnostic volume fraction weighting and the widely used closest-
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fixel-only method. Additionally, a proposed angular weighting strategy is

available to increase the robustness of attribution of fixels properties when

streamline segments are oriented between two fixels, thereby reducing the

impact of small angular variations.

However, angular weighting is not always the most adequate weighting

strategy; for instance, volume fraction weighting is recommended for whole-

brain analyses, as it allows a single microstructure map to represent the prop-

erties of 𝐾 fixels. For this reason, algorithms and frameworks using multi-

fixel model outputs should be flexible and support several angular weighting

strategies and averaging methods. The equations developed within the UN-

RAVEL framework’s theory can provide a basis for describing the various

ways of assigning microstructural properties to a tract.

Ideally, the same diffusion model should be used for both direction assign-

ment and microstructural analysis, as combining different models can intro-

duce conflicting assumptions and additional limitations. For instance, inte-

grating models such as MTMs with CSD-based orientation estimation can be

problematic due to their differing hypotheses regarding the signal’s response

function (see Background and Appendix A.6 for more information).

Populations studies

Many studies conducted in recent years for estimating the microstructural

properties of neural tracts still rely on single-fixel analysis, such as DTI, de-

spite the availability of more advanced multi-compartment models. Perhaps

due to the limited availability of these models in clinical settings and their

increased complexity compared to DTI. The methodology developed in this

thesis leverages these models and has been applied to population studies in

Chapters 4 and 5, demonstrating its feasibility for use in large cohorts. These

studies would benefit from an increased sample size and the correlation be-

tween the estimated tract microstructure and behavioral measures.

One of the main challenges in analyzing multiple tracts and their cor-

responding metrics across different diffusion models is the increased risk of

drawing inferences based on spurious correlations due to multiple compar-

isons. To address this, corrections such as Bonferroni and Benjamini-Hochberg

are often applied to adjust the p-value threshold, but these methods can be

overly restrictive. To mitigate this issue, it is useful to prioritize biological

hypotheses, thereby reducing the number of regions investigated and, conse-

quently, the number of comparisons performed.
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Limitations of the methodology

Despite the features and benefits provided by the contributions above, there

are limitations and specific cases where they should not be used or offer little

added benefits.

Regarding the methodology developed in Chapter 1, adapting tractogra-

phy algorithms with location-dependent parameters is valid only if verified

with biological studies and shown to be relevant for the algorithms currently

in use. Newer algorithms may not rely on the same parameters, potentially

rendering these changes insignificant. Nonetheless, developers should re-

main mindful of the possibility of adapting parameters based on the tractog-

raphy step’s location. The fact that these parameters have traditionally been

scalar variables does not mean they must remain so.

Other approaches using adaptive parameters are currently being investigated,

such as the attribution of streamline-specific parameters [166]. Furthermore,

for specific applications involving U-fibers, other toolboxes and software,

such as those described in [63], may be more suitable when the U-fiber tract

of interest is included in the predefined atlas and the required software is

available.

The filtering algorithm proposed in Chapter 2, and more specifically the

estimation of average streamline pathway, currently lacks robustness when

dealing with non-linear geometries or branching structures. This limitation

can lead to inaccuracies, which may impair the quality of along-tract analy-

sis. In such scenarios, alternative methods such as density filtering for remov-

ing spurious streamlines and AFQ [46] to estimate microstructural properties

along its pathway might provide more reliable results.

Since the UNRAVEL framework developed in Chapter 3 relies on the qual-

ity on its inputs, any limitations inherent in these inputs propagate to the

framework’s outputs. Consequently, UNRAVEL benefits significantly from

multi-shell data with a high number of directions, as these acquisition proto-

cols enhance the accuracy of both the tractography and multi-fixel models.

Moreover, using the UNRAVEL framework to assign multi-fixel properties to

tracts is less meaningful if the same model was already employed to generate

the tractography. For instance, in the case of CSD-based measures such as

AFD, the framework will operate as intended, but the information required

to assign the microstructural properties could have been obtained earlier, as

the same fODF lobe is used both to measure the AFD and to guide streamline

propagation, thereby removing the added value of employing the UNRAVEL

framework.
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Potential areas for further investigation

Several key concepts emerged as essential for the development of effective

tools when implementing the methodology and integrating it with other soft-

ware. These concepts highlight various areas for improvement in themethod-

ology, which can be categorized under three main criteria.

Validity

The first concept focuses on the necessity and validity of developing the tool

itself. It is necessary to assess whether the tool is truly needed: Does the

problem need to be solved, or are we optimizing dead-ends? Is there not a

more elegant solution?

In our case, themainmicrostructural analysismethod developed in themethod-

ology and applied in the population studies was centered around the out-

puts of multi-fixel models, which may not be the optimal direction. Other

paradigms, such as COMMIT [35], might prove to provide more accurate re-

sults in the long term.

The second aspect is the validity of the tool, ensuring that the algorithm’s

results are accurate and unbiased. This is often challenging to verify, as most

dMRI metrics represent an indirect measure of the brain’s structure. The tools

developed in Chapter 1 and 2 could benefit from additional validation through

tests on synthetic data and comparing them to state-of-the-art methods. Fur-

thermore, the results could be verified through histological inspections or

expert evaluations.

Usability

Once an algorithm is validated as an accurate estimation of a microstructural

property, the next priority is ensuring that the tool is easy to use and imple-

ment. This involves several aspects, such as the availability of the tool and

its visibility. While the codes presented in this thesis are open-source and

deployed as Python packages, their visibility could be enhanced by integrat-

ing them into widely known package libraries.

Implementation should ideally be fast and straightforward, without re-
quiring additional programs or dependencies. If users cannot easily test an

algorithm, fewer will end up using it. Furthermore, the codes should function
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with default parameters and minimal inputs. The UNRAVEL framework

currently requires several inputs to be in a specific format, simplifying this

process could make it easier to use.

Given the constantly evolving software and package environment in re-

search settings, support is essential to allow users to submit issues, receive

updates, and stay up to date with other packages. Package maintenance could

be improved for the methodology in Chapter 1, as it relies on other packages

that have been updated since the algorithm was developed.

Finally, to promote the adoption and reduce the learning curve of these

algorithms, tutorials and examples should be provided. While examples

and tutorials are available for the UNRAVEL framework, they could be up-

dated and expanded to cover new features.

Efficiency

The last key concept is code efficiency. Optimizing computation speed and re-

source usage will accelerate the analysis process and avoid wasting resources.

An efficient algorithm not only improves user experience but also makes the

methodology more accessible to users with less computing power or with a

larger amount of data to process.

Moreover, methodologies and algorithms should be based on simple concepts

and designs to reduce complexity. Over time, systems tend to become more

complex. Minor adjustments and additional options might improve perfor-

mance, but at the cost of an increased complexity. At some point the increase

in performance becomes negligible compared to the increase in complexity.

When this point is reached, effort must be deployed to actively reduce the

complexity, as this complexity increases the frequency and time required for

maintenance, making future development more difficult due to the inertia of

an overly complex system. To avoid this, it is important to minimize complex-

ity from the outset. Having fewer ’moving parts’ reduces maintenance and

enables quicker changes and future evolution, while complex systems tend to

become unsustainable.

Regarding complexity, the filtering algorithm could be simplified by adopting

a single method for detecting oversteps and missteps while also accounting

for non-linear geometries.
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A broader view of the integration of dMRI

Implementing the improvements mentioned above will streamline and accel-

erate the analysis process. This increased efficiency, when combined with

complementary measures and imaging modalities, has the potential to en-

hance our understanding of the underlyingmechanisms in pathological brains.

With other MRI modalities

DifferentMRImodalities provide different contrasts. Combining thesemodal-

ities enhances the precision and amount of information that can be extracted

from the brain. In this work, different contrasts have already been employed

alongside dMRI, such as using T1-weighted scans in Chapter 4 and 5 to cor-

rect dMRI data artifacts and distortions [167], as well as to register atlases and

other modalities using the ANTS software library [168].

Other MRI imaging modalities could be combined to provide a more com-

plete and detailed picture of the brain’s microstructure. An example is the es-

timation of myelin content, which is difficult to visualize with diffusion MRI,

as myelin contains few water molecules [169]. However, it can be estimated

using other protocols, such as magnetization transfer imaging [170, 171]. In-

tegrating myelin information with microstructural metrics could yield mea-

sures such as the g-ratio. The g-ratio, defined as the ratio of the inner to outer
radius of the myelin sheath surrounding the axon, helps decouple fiber den-

sity from myelin density. Research has shown that combining an MRI metric

sensitive to myelin volume fraction with one sensitive to the intra-axonal vol-

ume fraction (e.g., AFD or FVF) allows for the computation of the g-ratio in

each voxel, without needing to explicitly estimate axon diameter and myelin

sheath thickness. [172]

Another combination would be integrating fMRI and dMRI for connec-

tivity analyses. Currently, connectivity is divided into structural and func-

tional connectivity, typically estimated using dMRI and fMRI, respectively,

each with its own preferred atlases and experimental hypotheses. As seen

previously, dMRI can estimate structural connectivity through tractography

and quantitative filtering, while functional connectivity is assessed by exam-

ining the synchronization of activity across gray matter regions. These two

forms of connectivity are biologically linked, as brain activity in gray matter

is interconnected by the neural fibers of the white matter, forming communi-

cation pathways between regions. This interdependence between gray mat-

ter function and white matter characteristics has been partially explored in

recent studies [173, 174]. However, combining their outputs within a single
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framework could further enhance our understanding of the relationship be-

tween the brain’s functional and structural connections.

With other imaging modalities

The estimation of multi-modal metrics could be further enhanced by incor-

porating modalities beyond MRI, such as computed tomography (CT), radio-

graphy, and positron emission tomography (PET) scans. Certain pathologies

present biological markers linked to disease progression, such as the accumu-

lation of tau protein tangles in Alzheimer’s disease, which are associated with

amyloid-beta plaque formation. In these cases, PET scans provide an invalu-

able tool for locating and measuring the evolution of affected brain areas.

Integrating this information with connectivity measures could offer deeper

insights into how Alzheimer’s disease, primarily a gray matter condition, im-

pacts both structural and functional connectivity across brain regions. This

area of research is actively being explored [175].

Furthermore, a unified framework that employs common atlases or even cre-

ates pathology-specific atlases could significantly improve the efficiency and

effectiveness of multimodal analyses.

With other measures

Going further, combining imaging modalities with other measures could en-

hance the specificity of our interpretations and potentially lead to the devel-

opment of accurate biomarkers. A way to develop such biomarkers, or at

least deepen our understanding of pathologies, would be to integrate imag-

ing data with other behavioral or biological measures such as blood samples,

genetic data, or other physiological factors. This approach could help identify

reliable indicators for early detection, diagnosis, and monitoring of treatment

response in various neurological conditions, which would, in turn, enable

medicine to become more preventive and predictive. For example, combining

imaging with behavioral measures, as we did in the AUD study presented in

Chapter 5, could deepen our understanding of the connections between brain

microstructure and behavioral changes. Similarly, integrating genetic data, as

done in [175] for Alzheimer’s disease, could reveal important links between

genes and brain microstructure.

These biomarkers could facilitate the development of personalized medicine

which, when combined with active patient participation, could lead to more

tailored and effective patient care.
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I believe we are still in the early stages of diffusion MRI, the growth and

developments that occurred in the last 30 years have transitioned the technol-

ogy from proofs of concept to worldwide clinical use. The tools used in the

clinical settings are still lagging behind the level of the tools used in research,

which themselves do not fully leverage the theoretical advancements made in

diffusion models. To go a bit further, the models used in diffusion MRI could

also be improved by a more refined application of mathematical concepts,

such as through more precise formulation of hypotheses and the implemen-

tation of faster algorithms. This multi-disciplinary interdependency is of the

key factors for the dynamism of this research field with its components in-

volving mathematics, physics, signal processing, neuroscience, biology, and

statistics. Each discipline and their corresponding part in the diffusion MRI

pipeline are improving over time and ultimately enhance the quality of the

resulting output. Similarly, since the tools developed in this thesis are not

dependent on specific implementations or models, they will benefit from fu-

ture upstream improvements in the scanner sequences, diffusion models and

tractography algorithms, to better characterize the microstructure of specific

tracts.

Despite its reliance on setting well-defined parameters and the uncer-

tainty in the neural pathway it reconstructs, tractography remains one of

the most useful tool neurosurgeons and researchers have at their disposal

to investigate the neural pathways in vivo. And as demonstrated in Chap-

ter 1, simple modifications can be implemented in tractography algorithms

to improve the accuracy of the generated fiber bundles. As of today, not all

brain connections have been identified and ongoing debates persist regard-

ing tract endpoints, the categorization of bundles with similar pathways but

differing endpoints, and the subdivisions within fiber bundles. The improve-

ments in algorithms go hand in hand with the discovery of new connections,

as emerging tools are being developed to investigate specific tracts, leading

to the discovery of potential new pathways. The improvements of Chap-

ter 1 were centered around the distinction between deep white matter tracts

and short associations fibers and will hopefully contribute to a more accurate

analysis of those short connections, in which the medical field has a growing

interest.

The automated filtering described in Chapter 2 with its ease of use, fast

computation time and conservative filteringwill save researchers time by pre-

venting them from engaging in repetitive tasks to clean the tracts by manu-

ally filtering stray streamlines. The absence of a template enables the explo-

ration of lesser-known tracts or the extraction of tracts of interest based on

regions obtained with other modalities, such as fMRI-activated regions. This
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approach holds promise for patients with abnormal brain structures or a high

number of lesions, enabling tailored and patient-specific analyses of neural

pathways.

These improvements to tractography algorithms are complemented by

the ever-going development of diffusion models, which, despite their increas-

ing complexity and diversity, gain in accuracy and robustness year after year.

The UNRAVEL framework described in Chapter 3 will help with the analysis

of multi-fixel models along tracts of interest and the comparison of these dif-

ferent models in a single framework. The proposed angular weighing allows

tract-specific analyses to be less impacted by crossing fiber tracts, while the

streamline density weighted mean increased the robustness in case of erro-

neous tractography or diffusion model estimations. The theory defined could

also be of use to standardize different approaches under a single notation,

which would allow researchers to more easily see the differences between

the different methodologies employed in generating tract-specific mean val-

ues and facilitating implementation in their code.

The tools elaborated in this thesis aimed at facilitating the analysis of

white matter tract in neuropathological brains. The feasibility of the imple-

mentation of semi-automated analysis tools tailored for neuropathological

brains was illustrated with the changes observed in the population studies of

Chapter 4 and 5. The studies presented the potential microstructural changes

in motor pathways following intensive rehabilitation programs and their po-

tential implications for enhancingmotor function recovery. As well as the im-

pact of chronic alcohol consumption on the white matter tracts of the limbic

system. The fixel-specific along-tract differences especially look promising as

differences in the whole-tract mean often originate from localized differences

and a non-statistically significant mean may conceal local differences along

the tract. Further integrating these observations with other modalities could

unveil new biomarkers, paving the way for the development of personalized

medicine.
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A.1 Bloch equations

In a state of equilibrium between the nuclear moments and the surrounding

atoms, the net equilibrium magnetization 𝑀0 is defined as

𝑀0 =𝜒𝐵0

𝑀0 =
𝑁𝛾 2ℎ2𝐼𝑧(𝐼𝑧 + 1)

3𝑘𝑇
𝐵0

where𝑁 is the spin density, ℎ is Planck’s constant, 𝜆 is the gyromagnetic ratio,

𝐵0 is the magnetic field, 𝐼𝑧 is the spin number, 𝑘 is Boltzmann’s constant, and

𝑇 is the temperature. For hydrogen atoms, 𝐼𝑧 = 1/2, the equation becomes

𝑀0 =
𝑁𝛾 2ℎ2

4𝑘𝑇
𝐵0

Similarly to Rabi, Bloch investigated the behavior of nuclei contained in a

macroscopic sample of matter and acted upon by two external fields: a strong

constant field and at right angles to it, a comparatively weak radio-frequency

field [2]. The Bloch equation has two main components: one for the preces-

sion and the other for the relaxation after a RF pulse. Bloch introduces the

two relaxation time constants: the spin-lattice relaxation 𝑇1 and the spin-spin
relaxation 𝑇2. In a simplified form, the equation reads as

𝑑−→𝑀(𝑡)
𝑑𝑡

= 𝛾−→𝑀(𝑡) × 𝐵0 +
⎛
⎜
⎜
⎝

−1/𝑇2 0 0
0 −1/𝑇2 0
0 0 −1/𝑇1

⎞
⎟
⎟
⎠

−→𝑀(𝑡) +
⎛
⎜
⎜
⎝

0
0

𝑀0/𝑇1

⎞
⎟
⎟
⎠

In a rotating frame (to negate the effects of the precession) the part of

the equation describing the relaxation after and RF pulse has the following

solutions

−→𝑀(𝑡) =
⎛
⎜
⎜
⎝

𝑒−1/𝑇2 0 0
0 𝑒−1/𝑇2 0
0 0 𝑒−1/𝑇1

⎞
⎟
⎟
⎠

−→𝑀(0) +
⎛
⎜
⎜
⎝

0
0

𝑀0(1 − 𝑒−1/𝑇1)

⎞
⎟
⎟
⎠

A.2 RF pulses & flip angles

As mentioned in the previous section (Appendix A.1), radio frequency (RF)

pulses cause spinning protons to be deflected from their equilibrium state.

Immediately after an RF pulse, protons begin to return to equilibrium by two

separate processes: T1 and T2 relaxation. The flip angle is equal to the integral

of the RF pulse shape 𝑏1,
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A.3. THE LINK BETWEEN DIFFUSIVITY AND B-VALUE

𝜃 = 𝛾 ∫
𝑡

0
𝑏1(𝜏)𝑑𝜏,

which, for an RF pulse of constant amplitude 𝐵1 and duration 𝑡, can be

approximated as

𝜃 = 𝛾 ⋅ 𝐵1 ⋅ 𝑡,

where 𝛾 is the gyromagnetic ratio.

To go from an RF pulse of 90° to 180°, either the duration of the amplitude has

to be doubled.

A.3 The link between diffusivity and b-value

For a specific diffusivity 𝐷, the b-value with the highest discerning power

is the one with the highest slope, since a small variation in diffusivity will

greatly affect the signal received. To find the corresponding b-value, Equa-

tion (3) can be derived with respect to 𝐷

𝑆/𝑆′0 = −𝑏𝑒−𝑏𝐷. (A.1)

The minimum of this equation will correspond to the value with the greatest

negative slope. We derive Equation (A.1) with respect to 𝑏

0 = −𝑒−𝑏𝐷 + 𝑏𝐷𝑒−𝑏𝐷

𝑏 = 1/𝐷.

When inserted back into Equation (3), we find that the b-value with the high-

est slope (Figure A.1B) is the one for which the signal ratio is closest to

𝑆/𝑆0 = 𝑒−1,

which is verified when the number of b-values tends to infinity (see Fig-

ure A.1A) .

Another interesting aspect is the point of highest curvature, which is ob-

tained with the maximum of the second derivative of Equation (3). By deriv-

ing Equation (A.1) with respect to 𝐷

𝑆/𝑆′′0 = 𝑏2𝑒−𝑏𝐷,

and looking for its maximum among each b-value by deriving with respect to

𝑏

0 = 2𝑏𝑒−𝑏𝐷 − 𝑏2𝐷𝑒−𝑏𝐷

𝑏 = 2/𝐷,
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we get the point of highest curvature (Figure A.1D) . Across all b-values, the

one with the maximal curvature (Figure A.1C) is the one for which the signal

ratio is closest to

𝑆/𝑆0 = 𝑒−2.

Figure A.1: Evolution of the diffusion signal ratio depending on the diffusivity (A,C)
and its first (B) and second (D) derivatives. The b-value presenting the

highest slope (red) and curvature (blue) are also displayed.

A.4 Diffusion tensors

The diffusion tensor is symmetric, a minimum of 6 orientations are thus re-

quired to estimate its coefficients

𝐃 =
⎛
⎜
⎜
⎝

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

⎞
⎟
⎟
⎠
.

The elements of 𝐃 on its diagonal represent the diffusion coefficients

along the three principal directions. Once the diffusion tensor is obtained,

it becomes possible to use the eigenvalues of the tensor to represent inter-

esting properties of cerebral tissues. The eigenvalues are defined by the Λ
matrix
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A.4. DIFFUSION TENSORS

𝐃 = 𝐄 ⋅ Λ ⋅ 𝐄−1,

with E the eigenvectors matrix and Λ the eigenvalues matrix

𝐄 =
⎛
⎜
⎜
⎝

𝑒1𝑥 𝑒2𝑥 𝑒3𝑥
𝑒1𝑦 𝑒2𝑦 𝑒3𝑦
𝑒1𝑧 𝑒2𝑧 𝑒3𝑧

⎞
⎟
⎟
⎠
, Λ =

⎛
⎜
⎜
⎝

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞
⎟
⎟
⎠
.

A.4.1 Common metrics

Themean diffusivity (MD) can be computed from themean of the eigenvalues

of the diffusion tensor

𝑀𝐷 =
𝜆1 + 𝜆2 + 𝜆3

3
=

𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧

3
.

The diffusivity can also be separated into an axial component (AD) and a

radial component (RD)

𝐴𝐷 = 𝜆1,

𝑅𝐷 =
𝜆2 + 𝜆3

2
.

The fractional anisotropy (FA) is computed with the formula

𝐹𝐴 =
√
3
2

√
(𝜆1 − 𝑀𝐷)2 + (𝜆2 − 𝑀𝐷)2 + (𝜆3 − 𝑀𝐷)2

√
𝜆21 + 𝜆22 + 𝜆23

.

Or, equivalently

𝐹𝐴 =

√
1
2
(𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 + (𝜆3 − 𝜆1)2

𝜆21 + 𝜆22 + 𝜆23
.

A.4.2 Main direction to tensor

For visualization purposes, it is possible to obtain a diffusion tensor 𝐷 from a

direction vector d. Considering 𝑑𝑥 , 𝑑𝑦 and 𝑑𝑧 to be the change of coordinates
in the voxel space between to tractography steps, the vector

𝐝 =
⎛
⎜
⎜
⎝

𝑑𝑥
𝑑𝑦
𝑑𝑧

⎞
⎟
⎟
⎠
,

contains information about the main direction of propagation. By assur-

ing that the dot product between d and another is 0, a second perpendicular
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vector d⟂,1 can be obtained. The cross product between v and d⟂,1 gives the
third vector d⟂,2, perpendicular to the other two. These three vectors can be

considered to be the eigenvectors of the eigenvalues (1, 0, 0). For example,

𝐄 =
⎛
⎜
⎜
⎝

𝑑𝑥 −𝑑𝑧 − 𝑑𝑦 𝑑𝑦𝑑𝑥 − 𝑑𝑥𝑑𝑧
𝑑𝑦 𝑑𝑥 −𝑑2𝑥 − (𝑑𝑧 + 𝑑𝑦)𝑑𝑧
𝑑𝑧 𝑑𝑥 𝑑2𝑥 + (𝑑𝑦 + 𝑑𝑧)𝑑𝑦

⎞
⎟
⎟
⎠
.

A.5 Spherical harmonics

Spherical harmonics have two special properties: completeness and orthog-

onality. Orthogonality refers to the property of functions being independent

of each other. Completeness implies that a linear combination converges to

an exact result for a sufficient number of terms. Any function on the surface

of a sphere can thus be approximated using spherical harmonics.

𝑆(𝜃, 𝜙) = ∑
𝑙=0

𝑙
∑
𝑚=−𝑙

𝑠𝑚𝑙 𝑌
𝑚
𝑙 (𝜃, 𝜙),

where 𝑠𝑚𝑙 are the expansion coefficients.

In diffusionMRI, several hypotheses can be placed to simplify the number

of SH used in the entire set.

• Only even degrees 𝑙 are considered. Since the diffusion process is sym-

metric with respect to the origin, all odd order components must be

zero. [22]

• The response functions are axially symmetric, and therefore constrained

to the spherical harmonics of order m=0. [27]

A.6 Response function

The signal 𝑆(𝜃, 𝜙) measured from a voxel containing several fiber popula-

tions is given by the sum of the response functions 𝑅(𝜃) of each population,

weighted by their respective volume fractions 𝑓 , and rotated such that they

are aligned along their respective orientations

𝑆(𝜃, 𝜙) = ∑
𝑖
𝑓𝑖𝐴̂𝑖𝑅(𝜃),

with 𝐴̂ representing the rotation operation aligning the response function

to the fixel orientation. This equation can also be expressed as
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A.6. RESPONSE FUNCTION

𝑆(𝜃, 𝜙) = 𝐹(𝜃, 𝜙) ⊗ 𝑅(𝜃),

with 𝐹(𝜃, 𝜙) being the fODF. Due to the properties of the SH (see Ap-

pendix A.5), the spherical convolution operation can be formulated as an en-

semble of rotations of the convolution kernel on a function defined over a

sphere. This form reduces the spherical convolution operation to a set of ma-

trix multiplications.

In this example, the fODF will be defined as

𝐹(𝜃, 𝜙) = 𝑓1𝛿(90◦, 0◦) + 𝑓2𝛿(30◦, 0◦),

where 𝜃 is the polar angle, 𝜙 the azimuthal angle, 𝑓𝑘 the volume fractions

and 𝛿 a Dirac delta function on the sphere.

The response function used in this example is the response of a tensor model,

with 𝜆1 > 𝜆2 = 𝜆3, as in [23]. The diffusivity along a specific direction (𝜃, 𝜙)
is

𝐷(𝜃, 𝜙) =
⎛
⎜
⎜
⎝

sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

⎞
⎟
⎟
⎠

𝑇
⎛
⎜
⎜
⎝

𝜆3 0 0
0 𝜆2 0
0 0 𝜆1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

⎞
⎟
⎟
⎠

= 𝜆2 sin2 𝜃 + 𝜆1 cos2 𝜃

This equationwas simplified by aligning themain diffusion directionwith

the 𝑧 axis, which renders 𝐷 only dependent of 𝜃. The profiles of a single re-
sponse function and a mix of two response functions are presented in Fig. A.2

It should be noted that although the diffusion tensor model can be used to es-

timate the response function, one advantage of CSD is that it does not rely on

any model of diffusion.

Two observations can be made from the graphs shown in Fig. A.2: i) the

signal response decreases with increasing b-values, and ii) higher b-values

exhibit greater discerning power between different fixel orientations. At low

b-values fixel with similar orientations are merged into a single lobe.

For more information about the response function, see [22, 23].
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Figure A.2: Graph of the response function across different b-values for a single fixel
of orientation 90◦ and 𝑓 =1 in A Cartesian and B polar coordinates. In a

similar fashion, the C andD plots represent the same response function

with the addition of a second fixel of orientation 30◦ (red) and with both

𝑓 at 0.6 and 0.4 for the first and second fiber population, respectively.
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Interpretation at the segment level

This section provides another perspective on themicrostructuremaps (Eq. (3.10))

and the mean tract microstructural metric (Eq. (3.11)), interpreted at the level

of individual streamline segments.

Equation (3.10) can be rewritten as follows

𝑀
𝑣 =

∑𝐾
𝑘=1𝑤

𝑣𝑘𝑀
𝜇
𝑣𝑘

∑𝐾
𝑘=1𝑤

𝑣𝑘

=
∑𝐾

𝑘=1∑𝑠 𝛼𝑣𝑠𝑘𝑙𝑣𝑠𝑀
𝜇
𝑣𝑘

∑𝐾
𝑘=1∑𝑠 𝛼𝑣𝑠𝑘𝑙𝑣𝑠

(∗)

=
∑𝑠 𝑙𝑣𝑠 ∑

𝐾
𝑘=1 𝛼𝑣𝑠𝑘𝑀

𝜇
𝑣𝑘

∑𝑠 𝑙𝑣𝑠 ∑
𝐾
𝑘=1 𝛼𝑣𝑠𝑘

(∗∗)

=
∑𝑠 𝑙𝑣𝑠 ∑

𝐾
𝑘=1 𝛼𝑣𝑠𝑘𝑀

𝜇
𝑣𝑘

∑𝑠 𝑙𝑣𝑠
(∗∗∗)

=
∑𝑠 𝑙𝑣𝑠𝑀𝑣𝑠

∑𝑠 𝑙𝑣𝑠
, (∗∗∗∗)

where (∗) uses Eq. (3.8), (∗∗) switches the order of summation, (∗∗∗) uses
Eq. (3.1) and (∗∗∗∗) uses Eq. (3.7). The last equality states that the tract-

specific map in a voxel 𝑣 results from the contributions of all streamline seg-

ments in that voxel. Each segment contributes its segment-specificmicrostruc-

tural metric defined in Eq. (3.7), weighted by its intra-voxel length 𝑙𝑣𝑠 . The
quantity is normalized by the total segment length in that voxel.
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Similarly, Eq. (3.11) using Eq. (3.12) can be rewritten as

𝑀̄ =
∑𝑣 𝛾 

𝑣 𝑀
𝑣

∑𝑣 𝛾 
𝑣

=
∑𝑣 𝛾 

𝑣
∑𝑠 𝑙𝑣𝑠𝑀𝑣𝑠
∑𝑠 𝑙𝑣𝑠

∑𝑣 𝛾 
𝑣

(∗)

=
∑𝑣 ∑𝑠 𝑙𝑣𝑠

∑𝑠 𝑙𝑣𝑠𝑀𝑣𝑠
∑𝑠 𝑙𝑣𝑠

∑𝑣 ∑𝑠 𝑙𝑣𝑠
(∗∗)

=
∑𝑣 ∑𝑠 𝑙𝑣𝑠𝑀𝑣𝑠

∑𝑣 ∑𝑠 𝑙𝑣𝑠
,

where (∗) uses Eq. (3.14) and (∗∗) uses Eq. (3.9) and Eq. (3.12). The interpreta-
tion is similar to the tract-specific microstructure map 𝑀

𝑣 above, except for

the contributions, which are from all segments 𝑠 over all the voxels containing
streamlines of tract  .
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Additional graphs
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Figure C.1: Evolution of the symmetry ratio for different metrics (voxel_count: tract

volume, FVF: fiber volume fraction, RD: radial diffusivity, FA: fractional

anisotropy) along the pathway of the CST inA CP children and B adults

with stroke before (E0, blue) and after (E3, orange) neurorehabilitation.
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Figure C.2: Additional violin plots of the distribution of the microstructural metrics

of the A corpus callosum, B left cingulum, C right cingulum and D left

internal capsule for the AUD (blue) and control (orange) population,

before (E1) and after (E2) an 18-day period.
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Thank you for reading
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